

ГОСУДАРСТВЕННАЯ КОМПАНИЯ «РОССИЙСКИЕ АВТОМОБИЛЬНЫЕ ДОРОГИ» (ГОСУДАРСТВЕННАЯ КОМПАНИЯ «АВТОДОР»)

Страстной б-р, д. 9, Москва, 127006 тел.:+7 495 727 11 95, факс: +7 495 784 68 04 http://www.russianhighways.ru, e-mail: info@russianhighways.ru

05.10.2017	Nº 11667-TT7
На №	от

Директору региона ЦФО ООО «Тенсар Инновэйтив Солюшнз»

М.Л. Астахову

197198, г. Санкт-Петербург, ул. Введенская, д. 21

Уважаемый Михаил Леонидович!

Рассмотрев материалы, представленные Вашим письмом от 25.08.2017 № 08-18/17, продлеваем согласование стандарта организации ООО «Тенсар Инновэйтив Солюшнз» СТО 09686559-003-2015 «Георешетки пластмассовые экструдированные одноосноориентированные Tensar серии RE500. Технические условия» (далее — СТО) для добровольного применения на объектах Государственной компании сроком на один год с даты настоящего согласования.

По истечении указанного срока в наш адрес необходимо направить аналитический отчет с результатами мониторинга и оценкой применения материала в соответствии с требованиями СТО на объектах Государственной компании и прочих объектах.

Контактное лицо: заместитель директора Департамента проектирования, технической политики и инновационных технологий Ильин Сергей Владимирович, тел. (495) 727-11-95, доб. 33-07, e-mail: S.Iliyn@russianhighways.ru.

Заместитель председателя правления по технической политике

Juff

И.Ю. Зубарев

Общество с ограниченной ответственностью «Тенсар Инновэйтив Солюшнз»

ООО «Тенсар Инновэйтив СТАНДАРТ ОРГАНИЗАЦИИ CTO 09686559-003-2015

Солюшиз»

УТВЕРЖДАЮ

Тенеральный директор ООО «Тенсар Инновэйтив Солюшнз» М.А. Соловьев 2015 г.

ГЕОРЕШЕТКИ ПЛАСТМАССОВЫЕ ЭКСТРУДИРОВАННЫЕ ОДНООСНООРИЕНТИРОВАННЫЕ TENSAR СЕРИИ RE500

Технические условия

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Тенсар Инновэйтив Солюшнз» (ООО «Тенсар Инновэйтив Солюшнз») совместно с Обществом с ограниченной ответственностью «Автодор-Инжиниринг» (ООО «Автодор-Инжиниринг»)

- 2 ВНЕСЕН Обществом с ограниченной ответственностью «Тенсар Инновэйтив Солюшнз» (ООО «Тенсар Инновэйтив Солюшнз»)
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Генеральным директором ООО «Тенсар Инновэйтив Солюшнз» приказ № 1-12С от 01.12.15г.
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 СОГЛАСОВАН письмом _____

Информация об изменениях к настоящему стандарту размещается на официальном сайте ООО «Тенсар Инновэйтив Солюшнз» <u>www.tensar.ru</u> в сети Интернет. В случае пересмотра (замены) или отмены настоящего стандарта, соответствующее уведомление будет размещено на вышеуказанном сайте.

© ООО «Тенсар Инновэйтив Солюшнз»

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован, распространен и использован другими организациями в своих интересах без согласования с ООО «Тенсар Инновэйтив Солюшнз».

Содержание

1 Область применения1
2 Нормативные ссылки
3 Термины и определения
4 Классификация, условные обозначения4
5 Технические требования4
5.1 Общие положения
5.2 Основные показатели и характеристики4
5.3 Требования к сырью
5.4 Маркировка
5.5 Упаковка
6 Требования безопасности и охраны окружающей среды9
7 Правила приемки
8 Методы контроля12
9 Транспортирование и хранение14
10 Указания по применению
11 Гарантии изготовителя
Приложение А (рекомендуемое) Методика расчета конструкций
армонасыпей с применением георешеток серии RE50017
Приложение Б (рекомендуемое) Пример расчета армогрунтовой насыпи, с
применением георешеток серии RE50028
Библиография 36

СТАНДАРТ ОРГАНИЗАЦИИ

Георешетки пластмассовые экструдированные одноосноориентированные Tensar серии RE500 Технические условия

Дата введения -2015 - 12 - 01

1 Область применения

Настоящий стандарт распространяется на георешетки пластмассовые экструдированные одноосноориентированные Tensar (далее по тексту – георешетки), предназначенные для армирования грунта подпорных стен, устоев мостов, основания и откосов насыпей, восстановления оползневых склонов.

Георешетки представляют собой одноосноориентированные высокопрочные полимерные структуры, имеющие заданную прочность в направлении ориентации и изготовленные из полиэтилена высокой плотности (ПЭВП).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 9.049-91 Единая система защиты от коррозии и старения. Материалы полимерные и их компоненты. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.3.009-76 Система стандартов безопасности труда. Работы погрузочно-разгрузочные. Общие требования безопасности

ГОСТ 12.4.121-2015 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Противогазы фильтрующие. Общие технические условия

ГОСТ 15.009-91 Система разработки и постановки продукции на производство. Непродовольственные товары народного потребления

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ 14192-96 Маркировка грузов

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ Р 50277-92 Материалы геотекстильные. Метод определения поверхностной плотности

ГОСТ Р 55028-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Классификация, термины и определения

ГОСТ Р 55030-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения прочности при растяжении

ГОСТ Р 55031-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения устойчивости к ультрафиолетовому излучению ГОСТ Р 55032-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения устойчивости к многократному замораживанию и оттаиванию

ГОСТ Р 55033-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения гибкости при отрицательных температурах

ГОСТ Р 55035-2012 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения устойчивости к агрессивным средам

ГОСТ Р 56336-2015 Дороги автомобильные общего пользования. Материалы геосинтетические. Метод определения стойкости к циклическим нагрузкам

ГОСТ Р 56339-2015 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Метод определения ползучести при растяжении и разрыва при ползучести

ПНСТ 132-2016 Дороги автомобильные общего пользования. Материалы геосинтетические для дорожного строительства. Методика определения устойчивости геосинтетических материалов к микробиологическому воздействию

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 55028.

4 Классификация, условные обозначения

- 4.1 В зависимости от назначения и характеристик георешетки выпускают следующих марок:
 - Tensar RE510;
 - Tensar RE520;
 - Tensar RE540;
 - Tensar RE560;
 - Tensar RE570;
 - Tensar RE580.
- 4.2 Условное обозначение георешетки должно включать ее наименование, марку, указание через тире размеров полотна (длина и ширина в метрах), обозначение настоящего стандарта. Пример условного обозначения георешетки пластмассовой экструдированной Tensar марки RE520 с длиной полотна в рулоне 75 м, шириной полотна в рулоне 1,3 м:

Георешетка пластмассовая экструдированная одноосноориентированная Tensar RE520 – 75х1,3, CTO 09686559-003-2015.

5 Технические требования

5.1 Общие положения

- 5.1.1 Георешетки должны изготавливаться в соответствии с требованиями настоящего стандарта и технологической инструкции, утвержденными в установленном порядке.
- 5.1.2 Георешетки поставляют в рулонах. Рулон состоит из одного полотна. По согласованию с заказчиком возможна поставка георешетки в мерных кусках.

5.2 Основные показатели и характеристики

5.2.1 Внешний вид георешеток должен соответствовать образцуэталону по ГОСТ 15.009 (приложение 2), утвержденному в установленном порядке. Цвет георешеток — черный.

- 5.2.2 На полотне георешеток не допускаются разрывы, расслоения и посторонние включения.
- 5.2.3 Общая схема георешетки приведена на рисунке 1.
 Геометрические характеристики георешеток должны соответствовать следующим параметрам:
 - просвет ячейки по вертикали (218±10) мм.

Рисунок 1 – Общая схема георешетки Tensar серии RE500

- 5.2.4 Размер стандартных рулонов составляет:
- для марок RE510, RE520 75x1,3 м;
- для марок RE540, RE560, RE570, RE580 50x1,3 м.

Указанная величина по длине является минимальной. Допуск по ширине +3%.

- 5.2.5 Георешетки в рулонах должны быть плотно намотаны. Торцы рулонов должны быть ровными. Допускаются выступы на торцах рулона высотой не более 500 мм.
- 5.2.6 Физико-механические показатели георешеток должны соответствовать требованиям и нормам, указанным в таблице 1.

5.3 Требования к сырью

- 5.3.1 Сырье, применяемое для изготовления георешеток, должно соответствовать требованиям действующей нормативной документации, иметь все необходимые документы, предусмотренные действующим законодательством Российской Федерации и выпускаться в промышленном объеме.
- 5.3.2 Георешетки изготавливают из полиэтилена высокой плотности (ПЭВП) с добавлением углерода технического не менее 2 % (либо Георешетки изготавливают из полиэтилена высокой плотности (ПЭВП), в

состав которого входит углерод технический не менее 2 %). При этом допускается добавление собственных отходов производства одной и той же марки первичного полимера, используемой при изготовлении продукта.

Таблица 1 – Физико-механические показатели георешеток.

Наименование	Норма						
показателя	RE510	RE520	RE540	RE560	RE570	RE580	
Поверхностная	270	330	430	580	790	910	
плотность, не							
менее г/м ²							
Относительное			11±	3			
удлинение в							
продольном							
направлении при							
максимальной							
нагрузке %, не							
более							
Нагрузка при 5 %	18	20	30	40	50	55	
удлинении, кН/м,							
не менее							
Нагрузка при 2 %	8	10	15	20	25	30	
удлинении, кН/м,							
не менее							
Прочность при	40,0	52,8	64,5	88,7	118,4	137,3	
растяжении в							
продольном							
направлении кН/м,							
не менее							
Гибкость при		_	ом направ.			•	
отрицательной	50 мм	и без визуа	ально набл	юдаемого	разруше	ения	
температуре,							
минус 40 °С							
Грибостойкость			не более	$\Pi\Gamma_{123}$			
Устойчивость к			90				
микроорганизмам,							
% не менее							
Устойчивость к			90				
агрессивным							
средам, %, не							
менее							

Продолжение таблицы 1

Устойчивость к			9	90	***************************************	
ультрафиолетовому						
излучению, %, не						
менее						
Устойчивость к		90				
многократному						
замораживанию и						
оттаиванию, %, не						
менее						
Уровень нагрузки			5	50		
разрыва при						
ползучести при						
растяжении, в % не						
менее						
Устойчивость к	70 75 80 80 80 80					80
циклическим						
нагрузкам, %, не						
менее						

5.3.3 Входной контроль поступающих в производство сырьевых материалов осуществляется по паспортам качества, предоставляемым поставщиком отдельно на каждую партию сырьевых материалов. При отсутствии паспорта качества на поставленную партию, сырьевые материалы этой партии на допускаются к использованию в производстве продукции. Визуальный контроль целостности тары, наличия маркировки (этикеток), годности (по дате выпуска) обязателен.

5.4 Маркировка

- 5.4.1 К каждому рулону в двух местах прикрепляют скотч, на котором нанесена следующая информация:
- наименование или товарный знак предприятия-изготовителя, его юридический адрес;
 - условное обозначение георешетки;
 - масса брутто рулона;
 - поверхностная плотность;
 - гарантийный срок хранения;
 - обозначение настоящего стандарта.

- 5.4.2 Дополнительно на скотч крепят два ярлыка, на которые нанесена следующая информация:
 - условное обозначение георешетки;
 - дата изготовления;
 - размер рулона;
 - номер партии;
 - номер рулона.
- 5.4.3 К торцу рулона крепят двойную бирку со следующей информацией:
 - условное обозначение георешетки;
 - дата изготовления;
 - размер рулона;
 - номер партии;
 - номер рулона.

Примечание — При отгрузке половину бирки отрывают и хранят в архиве для идентификации продукции в случае предъявления претензий.

- 5.4.4 Маркировка должна быть отчетливой, без исправления информационных данных.
 - 5.4.5 Транспортная маркировка по ГОСТ 14192.

5.5 Упаковка

- 5.5.1 Георешетки наматывают в рулоны и скрепляются скотчем по окружности с двух сторон.
- 5.5.2 Допускается применять другие виды упаковки для обеспечения сохранности георешетки в процессе транспортирования и хранения.
- 5.5.3 Упаковка должна обеспечивать сохранность георешетки при проведении погрузочно-разгрузочных работ и в период гарантийного срока хранения.

6 Требования безопасности и охраны окружающей среды

- 6.1 Георешетки не оказывают вредного влияния на организм человека при непосредственном контакте, т.к. изготавливаются из малотоксичных компонентов.
- 6.2 Изготовитель гарантирует отсутствие самовоспламенения и взрывоопасности георешетки при соблюдении потребителем правил транспортирования и хранения, указанных в настоящем стандарте.
- 6.3 Средствами пожаротушения являются распыленная вода, пенные установки, огнетушители любого типа, песок. Тушить пожар необходимо в противогазах марки В по ГОСТ 12.4.121.
- 6.4 Процесс производства георешеток должен удовлетворять требованиям санитарных правил [1].
- 6.5 Контроль воздуха рабочей зоны должен быть организован в соответствии с ГОСТ 12.1.005 и [2].
- 6.6 К работам по производству георешетки допускаются лица, достигшие 18-летнего возраста, прошедшие первичный медицинский осмотр и не имеющие медицинских противопоказаний, получившие необходимые инструктажи по охране труда и прошедшие стажировку на рабочем месте.
- 6.7 При погрузочно-разгрузочных работах должны соблюдаться требования безопасности по ГОСТ 12.3.009.
- 6.8 С целью защиты атмосферного воздуха от выбросов вредных веществ при изготовлении георешетки, на предприятии должен быть организован производственный контроль в области охраны окружающей среды (производственный экологический контроль) в соответствии с утвержденным проектом ПДВ, а также на основании [3] и [4].
- 6.9 При изготовлении георешетки технологические сточные воды не образуются.
- 6.10 С целью защиты окружающей среды от негативного воздействия отходов производства, обращение с отходами на предприятии осуществляется в соответствии с требованиями [3], а также [5].

7 Правила приемки

- 7.1 Георешетки предъявляют к приемке партиями. Приемку продукции осуществляет сотрудник отдела качества. К партии относят количество рулонов георешетки одной марки, изготовленных на одной линии, из сырья одной марки и партии, по одной и той же технологической инструкции в объеме не более суточной выработки.
- 7.2 Качество георешеток проверяют по всем показателям, установленным в настоящем стандарте, путем проведения приемо-сдаточных, периодических и типовых испытаний.
- 7.2.1 Объем приемо-сдаточных, периодических и типовых испытаний для георешетки приведен в таблице 2.

Таблица 2 – Объем приемо-сдаточных, периодических и типовых испытаний

Наименование показателя	Приемо-	Периодические	Типовые
1 Внешний вид	+	+	+
2 Геометрические параметры	+	+	+
3 Размер рулона и качество	+	+	+
намотки			
4 Прочность при растяжении	+	+	+
5 Относительное удлинение при	+	+	+
максимальной нагрузке			
6 Нагрузка при 5 % удлинении	+	+	+
7 Нагрузка при 2 % удлинении	+	+	+
8 Содержание технического	-	+	+
углерода в экструдированном листе			
9 Гибкость при отрицательной	-	+	+
температуре			
10 Грибостойкость	-	-	+
11 Устойчивость к	-	-	+
микроорганизмам			

Продолжение таблицы 2

12 Устойчивость к агрессивным	-	-	+
средам			
13 Устойчивость к	-	-	+
ультрафиолетовому излучению			
14 Устойчивость к многократному	-	+	+
замораживанию и оттаиванию			
15 Ползучесть	-	-	+
16 Просвет ячейки по вертикали	+	+	+
17 Устойчивость к циклическим	-	+	+
нагрузкам			
18 Поверхностная плотность	+	+	+

- 7.3 Проверку внешнего вида, упаковки, маркировки изготовитель осуществляет на 100 % единиц продукции.
- 7.4 Испытания проводят на выборке от 2 % упаковочных единиц, но не менее чем из трех рулонов.
- 7.5 Для проведения испытаний от каждого отобранного рулона отрезают 2 м погонных по длине рулона георешетки. Разрезы полотна георешетки по длине и ширине проводят точно по серединам сторон ячеек. Индивидуальные образцы вырезают, отступив не менее четырех ребер от края полотна.
- 7.6 Если проверяемая георешетка хотя бы по одному показателю не удовлетворяет требованиям настоящего стандарта, проводят повторную проверку по этому показателю удвоенного количества рулонов данной партии.
- 7.7 Если при повторной проверке хотя бы один образец не удовлетворяет требованиям настоящего стандарта, то партию бракуют.
- 7.8 Забракованная партия может быть подвергнута полному контролю по всем показателям (в объеме типовых испытаний) для разбраковки.
- 7.9 Периодические испытания проводят для периодического подтверждения качества продукции и стабильности технологического процесса не реже одного раза в год.

- 7.10 При изменении сырья, поставщика и/или технологии производства, при постановке продукции на производство проводят типовые испытания.
- 7.11 По окончанию всех приемо-сдаточных испытаний уполномоченный сотрудник отдела контроля качества принимает решение о пригодности партии и оформляет паспорт качества.
- 7.12 Организация-изготовитель должна сопровождать партию георешетки документом о качестве (паспортом), в котором указывают:
 - наименование и адрес предприятия-изготовителя;
 - условное обозначение георешетки;
 - номер партии и дату изготовления;
 - результаты испытаний;
 - условия и сроки хранения;
 - обозначение настоящего стандарта;
 - штамп и подпись лиц, ответственных за технический контроль.

8 Методы контроля

- 8.1 Контроль внешнего вида
- 8.1.1 Контроль упаковки и маркировки георешетки проводят визуально.
- 8.1.2 Качество намотки георешетки в рулоны проверяют визуально и измерением выступов на торцах рулона с использованием измерительной металлической линейки по ГОСТ 427.
- 8.1.3 Внешний вид георешетки проверяют визуально, путем сравнения с образцом-эталоном, утвержденным в установленном порядке, на длине проверяемой георешетки не менее 10 м, при равномерной освещённости не менее 30 лк.
 - 8.2 Определение геометрических параметров

- 8.2.1 Ширину георешетки определяют в начале и конце рулона с использованием рулетки по ГОСТ 7502. За значение показателя ширины принимают среднее арифметическое значение двух измерений.
- 8.2.2 Длину рулона определяют в процессе изготовления счетчиком метража, установленным в технологической линии, или с использованием рулетки по ГОСТ 7502.
- 8.2.3 Размер просвета ячеек по вертикали определяют по ГОСТ 26433.1.
- 8.3 Поверхностную плотность георешетки определяют по ГОСТ Р 50277.
- 8.4 Прочность при растяжении, относительное удлинение при максимальной нагрузке и нагрузку при 2 % и 5 % определяют по ГОСТ Р 55030 минимум на шести образцах.

Прочность при растяжении и относительное удлинение при максимальной нагрузке определяют по ГОСТ Р 55030 со следующими дополнениями:

- образец должен иметь три поперечных элемента узловых соединений;
 - в захваты машины устанавливают крайние поперечные элементы;
- прочность материала образца при растяжении, отнесенная к 1 м погонному георешетки (N_м) в кН/м вычисляют по формуле (1):

$$N_M = \frac{N*60}{a*b} * 1000, \tag{1}$$

где N – максимальная нагрузка при разрыве образца, кH;

а – количество ребер в образце, подвергнутых испытаниям;

b – фактическая ширина полотна георешетки, мм;

60 – количество ребер, приходящихся на всю ширину полотна размером (1,30+0,04) м.

Удлинения при максимальной нагрузке определяют с помощью экстензометра. При определении удлинения по расстоянию между зажимами,

в качестве зажимной длины образца принимается расстояние между центрами зафиксированных узлов.

- 8.5 Грибостойкость определяют по ГОСТ 9.049.
- 8.6 Устойчивость к воздействию микроорганизмов определяют по ПНСТ 132.
- 8.7 Устойчивость к действию ультрафиолетового излучения определяют по ГОСТ Р 55031.
- 8.8 Устойчивость к многократному замораживанию и оттаиванию определяют по ГОСТ Р 55032.
- 8.9 Гибкость при отрицательных температурах определят по ГОСТ Р 55033.
- 8.10 Устойчивость к циклическим нагрузкам определяют по ГОСТ Р 56336.
- 8.11 Устойчивость к агрессивным средам определяют по ГОСТ Р 55035.
- 8.12 Нагрузка разрыва при ползучести при растяжении в % от прочности при растяжении определяется по ГОСТ Р 56339 в течении 1000 ч.

9 Транспортирование и хранение

- 9.1 Транспортирование
- 9.1.1 Погрузку в транспортные средства рулонов георешетки производят всеми видами погрузочного транспорта в паллетах или навалом в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 9.1.2 Георешетку транспортируют всеми видами транспортных средств, обеспечивающими сохранность георешетки и упаковки, в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.

9.2 Хранение

- 9.2.1 Георешетку рекомендуется хранить под навесом или в помещении в условиях хранения 5 (ОЖ4) по ГОСТ 15150, допускается хранение на открытых площадках в условиях хранения 8 (ОЖ3) по ГОСТ 15150. Условия хранении должны исключать механические или химические воздействия.
- 9.2.2 Не допускается складирование более пяти рулонов по высоте и размещение сверху других грузов.

10 Указания по применению

10.1 Расчет конструкций

Расчет конструкции армонасыпей с применением георешеток осуществляется в соответствии с приложением А.

Пример расчета конструкции армонасыпи приведен в приложении Б.

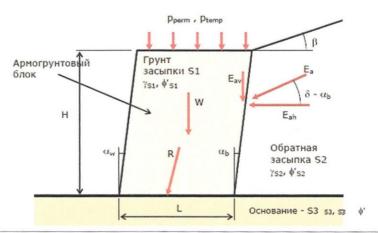
10.2 Укладка георешеток

Укладку георешеток проводят следующим образом: уложить георешетку на проектный уровень, перпендикулярно бровке земляного полотна или лицевой грани сооружения. Смежные решетки должны быть уложены в одном уровне и встык, без нахлеста (кроме участков в кривых) или с расстоянием между полотнами в соответствии с расположением стартеров в облицовочных элементах (с учетом % покрытой площади в расчете). Сопряжение облицовкой и соединение по длине осуществляется с помощью закладных деталей.

- 10.3 Срок службы георешетки соответствует сроку службы сооружения/конструкции. Предполагаемый срок службы георешеток в естественном грунте при рН от 2 до 12,5 составляет до 120 лет при условии соблюдения всех требований настоящего стандарта.
- 10.4 Укладка георешеток на объекте возможна при температуре окружающей среды до минус $40\,^{\circ}\mathrm{C}$.

11 Гарантии изготовителя

- 11.1 Предприятие-изготовитель гарантирует соответствие георешеток требованиям настоящего стандарта при условии полного соблюдения правил хранения, транспортирования и эксплуатации, установленных настоящим стандартом.
 - 11.2 Гарантийный срок хранения 5 лет.
- 11.3 По истечении гарантийного срока хранения георешетки могут быть рекомендованы к использованию только после проверки на соответствие всем требованиям настоящего стандарта (в объеме типовых испытаний).


Приложение А

(рекомендуемое)

Методика расчета конструкций армонасыпей с применением георешеток серии RE500

А.1 Общие принципы.

В данном методе расчета нет никакого ограничения для угла наклона лицевой грани (a_w) конструкции, но угол задней грани (a_b) не должен превышать 20° от вертикали. Основные силы, действующие на конструкцию, и геометрические размеры показаны на рисунке A.1.

α_b	 угол наклона задней грани армогрунтового блока к вертикали;
α_w	 угол наклона лицевой грани армогрунтового блока к вертикали;
c's3	 расчетное значение общего сцепление грунта в условиях фактического
	напряженного состояния для грунта основания;
L	 длина основания армогрунтового блока;
H	 высота армогрунтового блока;
β	 крутизна верхней части откоса;
P_{perm}	 расчетная постоянная дополнительная нагрузка;
P_{tem}	 расчетная временная дополнительная нагрузка;
R	 результирующая сила на грунт основания;
$\varphi_{s1\ s2\ s3}$	- расчетное значение угла внутреннего трения грунта засыпки, обратной
	засыпки и основания соответственно;
W	 вес армогрунтового блока;
E_a	 результирующая активная сила;
E_{ah}	 горизонтальная составляющая активной силы;
E_{av}	 вертикальная составляющая активной силы;
y s1 s2 s3	– расчетное значение удельного веса грунта засыпки, обратной засыпки и
	основания соответственно.

Рисунок А.1 - Расчетная схема армонасыпи

Вследствие относительно больших напряжений, возникающих в конструкциях из армированного грунта, величины критического состояния или постоянного объема используются для прочностных характеристик грунта (т.е. ϕ_{cv} , c'_{cv}). Эффективное сцепление

армированной засыпки обычно принимают равным нулю, но допускается максимальная величина, равная 5 кПа.

Расчетная прочность решеток по первой группе предельных состояний основана на формуле (A.1):

Допустимая нагрузка =
$$T_d = \frac{T}{1.931 \cdot f_{m1} \cdot f_{m2}} \cdot \frac{1}{\gamma}$$
 (A.1)

где T — нормативная прочность геосинтетического материала;

 f_{ml} — частный коэффициент повреждения при монтаже при заданной максимальной крупности частиц грунта засыпки;

 f_{m2} – частный коэффициент деградации под воздействием окружающей среды (УФ, химические соединения, микробиологическое воздействие, замораживание-оттаивание);

 γ — коэффициент надежности по прочности георешетки = 1,25 при расчете в соответствии с [6] и 1,5 при расчете в соответствии [7].

В таблице А.1 показаны соответствующие частные коэффициенты для георешеток Tensar RE500, которые также могут быть назначены в соответствии с данными повреждаемости при пробной укладке или результатами дополнительных испытаний.

Таблица А.1 – Частные коэффициенты для георешеток Тенсар RE500

Г	fm1		fm2	
Георешетка	фр. 0-5	фр. 40-70	IIII2	γ
RE510	1,18	1,30	1,1	1,25 – 1,50
RE520	1,07	1,25	1,1	1,25 – 1,50
RE540	1,07	1,20	1,1	1,25 – 1,50
RE560	1,07	1,15	1,1	1,25 – 1,50
RE570	1,07	1,12	1,1	1,25 – 1,50
RE580	1,00	1,06	1,1	1,25 - 1,50

Коэффициент 1,931— приведения кратковременной прочности к долговременной прочности на срок службы 120 лет при расчетной температуре +10°C, при расчетной температуре +20°C данный коэффициент принимается равным 2,10.

А.2 Расчет внешней устойчивости.

Различные силы, действующие на блок из армированного грунта, показаны на рисунке A.1.

Внешнее давление на блок из армированного грунта рассчитывается с помощью уравнения Кулона с углом трения по стенке (δ), равным 2/3 от угла трения засыпного материала.

Горизонтальная составляющая активной силы (E_{ah}) дается в уравнении (A.2):

$$E_{ah} = E_{agh} + E_{aph} = (0.5 \cdot K_{ah} \cdot g_b \cdot H^2) + (K_{ah} \cdot P \cdot H)$$
(A.2)

где

$$K_{ah} = \frac{\cos^2(\phi_b' + \alpha_b)}{\cos^2 \alpha_b \left[1 + \sqrt{\frac{\sin(\phi_b' + \delta)\sin(\phi_b' - \beta)}{\cos(\alpha_b - \delta)\cos(\alpha_b + \beta)}} \right]^2}$$
(A.3)

 E_{ah} — дополнительная нагрузка (временная и постоянная) позади блока из армированного грунта;

 E_{agh} — горизонтальная составляющая активной силы от грунта;

 E_{aph} — горизонтальная составляющая активной силы от дополнительной нагрузки позади блока из армированного грунта.

Вертикальная составляющая активной силы (E_{av}) дается в уравнении (A.4):

$$E_{av} = E_{ah} \cdot tan(\delta_{u} - \alpha_b) \tag{A.4}$$

При этом надлежит проверить устойчивость ряда клиньев, идущих от задней части армогрунтового блока, а путем разложения различных сил, действующих на клин, определяется максимум равновесной силы, соответствующей активному давлению грунта.

А. 2.1 Проверка на сдвиг.

Коэффициент безопасности по отношению к разрушению вследствие сдвига дает уравнение (A.5):

$$FoS = \frac{\text{сила сопротивления}}{\text{сила скольжения}} = \frac{\mu(W + E_{av}) + f_s c' L}{E_{ah}}$$
 (A.5)

где

 μ - коэффициент трения, равный f_s -tan θ ;

fs- коэффициент взаимодействия при сдвиге по поверхности решетки.

Сила сопротивления рассчитывается дважды с использованием характеристик грунта (как для насыпного грунта стенки, так и для грунта основания). Меньшая из этих двух сил используется в уравнении (A.5).


 f_s принимают равным 1, если нет решетки в пределах 10 мм от основания конструкции.

Минимальный коэффициент надежности (безопасности) относительно сдвига равен 1,5.

А.2.2 Проверка несущей способности.

Этот метод имеет преимущество в том, что учитывает наклон R, в том числе, коэффициенты наклона в стандартных уравнениях Терцаги.

На рисунке. А.2 показано распределение сил при расчетах несущей способности. Считают, что давление, оказываемое конструкцией, действует по эффективной длине основания L' от L-2e, где эксцентричность положительная, т.е. распределение давления по Мейергофу. Однако, если эксцентричность (эксцентриситет) отрицательная, то допускается равномерное давление по всему основанию.

 E_{agv} — вертикальная составляющая активной силы, действующей от грунта; E_{apv} — вертикальная составляющая активной силы от дополнительной нагрузки позади блока из армированного грунта.

Рисунок А.2 - Расчетная схема для определения несущей способности основания

Опрокидывающий момент (около подошвы) силы вследствие бокового давления грунта в задней части блока из армированного грунта дается в уравнении (A.6):

$$OTM = \left[E_{agh} \cdot \frac{H}{3}\right] + \left[E_{aph} \cdot \frac{H}{2}\right] - E_{agv}\left[L + \frac{H}{3}\tan\alpha_b\right] - E_{apv}\left[L + \frac{h}{2}\tan\alpha_b\right]$$
(A.6)

Если насыпной грунт имеет эффективное сцепление, то уравнение (А.6) должно быть модифицировано, чтобы включить дополнительный комплект горизонтальной и вертикальной составляющих. Самым неблагоприятным моментом для несущей способности будет полная нагрузка с дополнительной нагрузкой на блок из армированного грунта (т.е. $P_{perm}+P_{temp}$), и тогда плечо рычага «x» результирующей силы дает уравнение (А.7), а эксцентриситет (e) результирующей силы – уравнение (А.8):

$$x = \frac{Wd + \left[P_{perm} + P_{temp}\right]H \tan \alpha_w + \frac{L}{2} \cdot L - OTM}{W + \left[P_{perm} + P_{temp}\right]L + E_{agv} + E_{apv}}$$
(A.7)

$$e = \frac{L}{2} - x \tag{A.8}$$

Следует выполнить проверку для того, чтобы убедиться, что результирующая сила действует в пределах средней трети длины L основания.

Предельное опорное давление дается на основе модифицированного уравнения Терцаги по формуле (A.9):

$$\sigma_f = c' N_c x_c + \gamma L N_b x_b \tag{A.9}$$

где x_b определяется по формуле (A.10), x_c определяется по формуле (A.11):

$$x_b = \left[1 - \frac{h_b}{V_b + \frac{L' \cdot c'}{\tan \phi'}}\right]^3 \tag{A.10}$$

$$x_c = x_d - \frac{1 - x_d}{N_d - 1} \tag{A.11}$$

где x_d определяется по формуле (A.12):

$$x_d = \left[1 - \frac{0.7h_b}{V_b + \frac{L' \cdot c'}{\tan \phi'}}\right]^3 \tag{A.12}$$

где h_b – горизонтальная разрушающая нагрузка, равная $2 \cdot E_{ah}$;

 V_b – вертикальная разрушающая нагрузка, равная $2(W+P+E_{av})$;

 N_c , N_b – коэффициенты несущей способности Терцаги;

P — дополнительная нагрузка на верхней части армогрунтового блока;

W – вес армогрунтового блока.

Тогда коэффициент безопасности по отношению к несущей способности определяется уравнением (А.13):

$$FoS = = \frac{\sigma_f \cdot L'}{\text{приложенная нагрузка}} \tag{A.13}$$

Требуется минимальный коэффициент безопасности 2,0 по отношению к нарушению несущей способности.

Кроме описанной выше проверки, надлежит проверять также распределение дополнительной нагрузки, которое вызывает максимальный момент опрокидывания. Для армонасыпей с наклонными сторонами этот случай может быть критическим вследствие сокращения эффективной длины основания конструкции. На рисунке А.3 показано распределение нагрузок на случай с максимальным моментом опрокидывания.

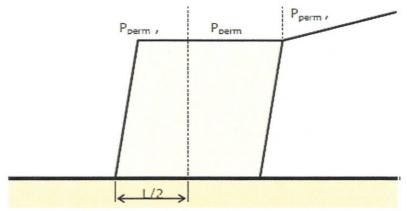


Рисунок А.3 - Распределение нагрузок с максимальным опрокидывающим моментом

А.3 Расчет внутренней устойчивости.

А.3.1 Проверка клиньев.

Чтобы определить внутреннюю устойчивость конструкции, ее исследуют на основе равновесия ряда клиньев. Клинья возникают на лицевой грани и проходят через заднюю часть армогрунтового блока (рисунок A.4).

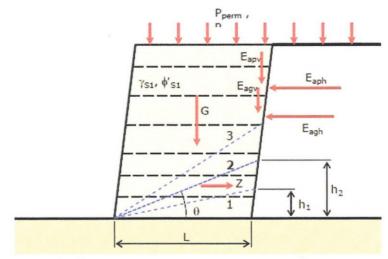


Рисунок А.4 - Расчетная схема для проверки внутренней устойчивости

Активное давление над точкой, где нижний клин пересекает заднюю часть блока, добавляется к возмущающей силе от воздействия массы блока и внешних нагрузок, которые создают общую возмущающую силу. Для расчета внутренней устойчивости величина δ берется равной ϕ .

Поэтому возмущающая сила на любом клине определяется уравнением (А.14):

$$Z = (G + P_{perm} + P_{temp} + E_{agv} + E_{agh}) tan(\beta - \phi'_w) + E_{agh} + E_{aph} - c \mathcal{I}$$
(A.14)

где G – вес блока из армированного грунта.

Арматура вставляется для того, чтобы прервать каждый клин, где Z больше нуля.

Нагрузка для каждого слоя арматуры сзади клина должна быть проверена. Допустимую силу анкеровки (T_{ai}) в решетке i^{th} дает уравнение (A.15):

$$T_{ai} = \frac{2L_{ip}f_p \tan \phi_w'(\gamma_w h_i + P_{perm})}{FoS}$$
(A.15)

где FoS=2,0;

 L_{ip} – длина заделки георешетки за пересечением с клином;

 f_p — коэффициент взаимодействия в системе арматура-грунт (выдергивание армоэлемента из грунта);

 h_i — высота до поверхности над решеткой i.

Если T_{ai} превышает расчетную прочность решетки, то эта расчетная прочность, а не сила анкеровки является максимальной удерживающей силой, которая может быть включена в расчеты.

Проверка внутренней устойчивости предпринимается в основании конструкции, на нижнем уровне решетки и там, где имеется изменение либо расположения, либо типа арматуры. Проверки проводятся также наверху внешних стоячих или подземных вод. Отдельные клинья из двух частей на любом уровне анализируются с интервалами в 3° , и в каждом случае сравнивается возмущающая сила (Z) с удерживающей силой R, которую обеспечивает арматура. Для внутренней устойчивости, которая должна быть обеспечена, R должно быть больше Z.

А.3.2 Проверка на внутренний сдвиг.

Надлежит проверить внутренний сдвиг по георешеткам и между ними (рисунок А.5).

Требуемый коэффициент запаса >1.5 на сдвиг по наиболее крутому клину между любыми двумя смежными георешетками.

Требуемый коэффициент запаса >1.5 на сдвиг любой георешетке.

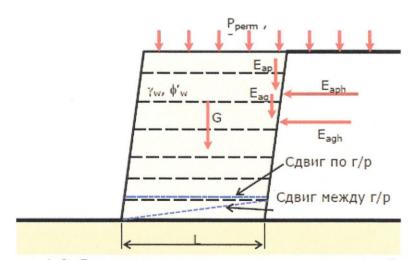


Рисунок А.5 - Расчетная схема для проверки на внутренний сдвиг

А.3.3 Проверка по деформациям.

Важнейшим аспектом для армонасыпи в процессе эксплуатации является ограничение деформации облицовки, вызванной удлинением георешеток.

В зависимости от назначения и эксплуатационного срока службы конструкции возможно использовать различную проектную прочность арматуры:

- Временные армогрунтовые подпорные структуры с гибкими облицовками,
 структуры низкой значимости могут иметь деформацию от 2% до 5%;
- Армогрунтовые подпорные стены с жесткими облицовками и важные объекты 1% на весь расчетный срок службы;

- Армогрунтовые устои мостов -0.5% на весь расчетный срок службы.

В данном расчете используется проектная прочность, полученная не в момент разрыва георешетки, а при заданном % удлинения для данного срока службы и температуры.

Расчетная прочность решеток по второй группе предельных состояний основана на формуле (A.16):

Допустимая нагрузка =
$$T_d = \frac{T_{cr}}{1.931 \cdot f_{m1} \cdot f_{m2}} \cdot \frac{1}{\gamma}$$
 (A.16)

где *Tcr* –долговременная прочность, которая ограничивает послестроительные деформации заданной величиной с учетом ползучести на заданный срок службы при определенной средней температуре в грунтовом массиве;

 γ – коэффициент надежности по прочности георешетки = 1,00 для данной проверки.

А.3.4. Проверка лицевой грани

В случае конструкций с обернутыми вокруг грани элементами проводится проверка с тем, чтобы гарантировать, что активное давление на грань не превышает расчетную прочность георешетки (или силу анкеровки (T_{ai}), если не используется прочное сшивное соединение). Это показано на рисунке A.6.

Рисунок А.6 - Проверка прочности облицовки

 Π р и м е ч а н и е $-e_{ah}$ = активное давление на лицевую грань конструкции.

Сила, приложенная к решетке на лицевой грани, рассчитывается как активная сила, действующая на половину толщины слоя, где максимальное активное давление на лицевую грань берется равным величине при 2/3 высоты стенки. Давление грунта на лицевую грань в нижней трети стенки принимается как постоянное при той величине. Во всех этих расчетах α равна нулю.

А.4 Проверка общей устойчивости против сдвига по КЦ и ломаным поверхностям скольжения.

Цилиндрические и нецилиндрические (ломаные) поверхности обрушения. КЦПС проверяются по модифицированному упрощенному методу Бишопа (рисунок А.7), ломаные поверхности – по модифицированному упрощенному методу Джамбу.

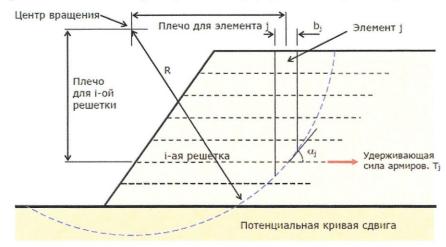


Рисунок А.7 - Цилиндрическая поверхность обрущения

Устойчивость неармированного сечения определяется по формулам (A.17)-(A.20): Упрощенный метод Бишопа:

$$M_{D} = \sum_{j=1}^{j=n} \left[\left(f_{js} W_{j} + f_{q} b_{j} p_{sj} \right) \sin \alpha_{j} R_{d} \right]$$
(A.17)

$$M_{RS} = \sum_{j=1}^{j=n} \frac{\left[\frac{c'}{f_{ms}}b_j + \left(f_{fs}W_j + f_bb_jp_{sj} - b_ju_j\right) \frac{\tan\varphi'_p}{f_{ms}}\right] \sec\alpha_j R_d}{\chi \left(1 + \frac{\tan\varphi'_p}{f_{ms}} \tan\alpha_j\right)}$$
(A.18)

Упрощенный метод Джамбу

$$F_D = \sum_{j=1}^{j=n} \left[\left(f_{js} + f_q b_j p_{sj} \right) \tan \alpha_j \right]$$
(A.19)

$$F_{RS} = \sum_{j=1}^{j=n} \frac{\left[\frac{c'}{f_{ms}}b_j + \left(f_{fs}W_j + f_bb_jp_{sj} - b_ju_j\right)\frac{\tan\varphi'_p}{f_{ms}}\right]\sec^2\alpha_j}{\chi\left(1 + \frac{\tan\varphi'_p}{f_{ms}}\tan\alpha_j\right)}$$
(A.20)

где M_D – сдвигающий момент от веса насыпи и дополнительной нагрузки;

 M_{RS} – удерживающий момент от сопротивления грунта сдвигу;

 F_D – сдвигающая сила от веса насыпи и дополнительной нагрузки;

 F_{RS} – удерживающая сила от сопротивления грунта сдвигу;

c' – сцепление по подошве элемента под эффективным напряжением;

Примечание – Su может быть использовано для недренированного состояния.

 B_j — ширина элемента \mathbf{j} ;

 W_i – вес элемента j;

 p_{sj} – дополнительная нагрузка, действующая на элемент **j**;

 u_{j} – поровое давление воды по подошве элемента j;

 ϕ'_{p} – угол внутреннего трения грунта подошвы элемента j;

 α_{i} – угол наклона подошвы элемента j;

 R_d – радиус КЦПС;

 χ – коэффициент корректировки момент/сила (=1.25);

 f_{fs} – частный коэффициент для объемного веса грунта;

 f_q – частный коэффициент для дополнительной нагрузки;

 f_{ms} – частный коэффициент для $tan\phi$ и c;

Таким образом, частные коэффициенты применяются ко всем усилиям и материалам в анализе. Для обеспечения устойчивости насыпи в методе Бишопа для каждой кривой M_D не должен превышать M_{RS} , для метод Джамбу F_d должно быть меньше F_{RS} .

Армирующие георешетки располагаются горизонтальными слоями, и эффект от них выражается в добавление серии удерживающих сил против сдвига анализируемой кривой. Рассчитывается сечение на 1 м.п. длины и прочность георешеток учитывается как сила на 1 м их ширины. Сопротивление армирования, вводимое в расчет — это наименьшее усилие, возникающее в георешетке на протяжении расчетного срока службы сооружения. Это может быть либо расчетное значение длительной прочности георешетки, либо уменьшенное ее значение, если длина анкеровки не позволяет ее полностью мобилизовать.

Сила анкеровки в георешетке мобилизуется трением по грунту и сцеплением с окружающими частицами. Так как силы трения и сцепления действуют на нижнюю и верхнюю грани георешетки, то сила анкеровки (Ti) вычисляется по формуле (A.21):

$$T_{i} = \frac{2L_{ei}\left[\left(\gamma h_{i} + p_{si}\right)\frac{\alpha' \tan \varphi'_{p}}{f_{ms}} + \frac{\alpha'_{bc}c'}{f_{ms}}\right]}{f_{p}f_{n}}$$
(A.21)

где L_{ei} – длина анкеровки за потенциальной поверхностью обрушения;

 h_i – высота толщи грунта над слоем I;

у – объемный вес грунта над георешеткой I;

 p_{si} — постоянная дополнительная нагрузка над решеткой I;

 α — коэффициент взаимодействия грунт/решетка на выдергивание в зависимости от $\tan \varphi$;

 α_{bc} ' – коэффициент взаимодействия грунт/решетка в зависимости от с';

 f_p – частный коэффициент а выдергивание;

 f_n — коэффициент взаимодействия в системе арматура-грунт (выдергивание армоэлемента из грунта).

Если результирующее значение T_i больше T_D , тогда оно принимается равным T_D .

При проверке цилиндрических поверхностей методом Бишопа, добавляется удерживающий момент от армирования. Он определяется как усилие в георешетке (T_i), умноженное на плечо для данного слоя армирования. Для і-ой решетки, удерживающий момент (M_i) определяется по формуле (A.22):

$$M_i = T_i (Y_c - Y_i) \tag{A.22}$$

где Y_c – у координата центра кривой сдвига;

 Y_i - у координата слоя георешетки.

Тогда удерживающий момент всех георешеток (M_{RR}) определяется по формуле (A.23):

$$M_{RR} = \sum_{i=1}^{n} T_i \, \left(Y_c - Y_i \right) \tag{A.23}$$

Аналогично вычисляется и удерживающий момент при анализе ломаных поверхностей методом Джамбу. Общая удерживающая сила по формуле (A.24):

$$F_{RR} = \sum_{i=1}^{n} T_i \tag{A.24}$$

Условие равновесия для метода Бишопа выражается формулой (А.25):

$$M_D \le M_{RS} + M_{RR} \tag{A.25}$$

Условие равновесия для метода Джамбу выражается формулой (А.26):

$$F_D \le F_{RS} + F_{RR} \tag{A.26}$$

Когда подошва элемента находится на георешетке, рядом с ней и параллельна ей, то присутствие георешетки может повлиять на удерживающую силу от прочности грунта. В таких случаях, программа использует коэффициент взаимодействия на сдвиг (fs) и применяет его к сцеплению и углу трения грунта. Это снижает сопротивление сдвигу вдоль этой части поверхности скольжения.

Приложение Б

(рекомендуемое)

Пример расчета армогрунтовой насыпи

Б.1 Исходные данные для расчета армонасыпи приведены на рисунке Б.1.

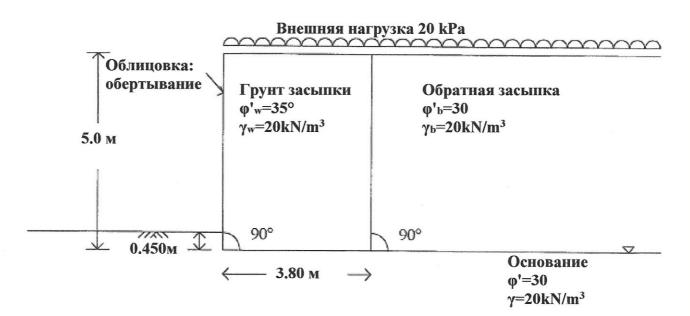


Рисунок Б.1 – Исходные данные

- Б.2 Расчет внешней устойчивости.
- Б.2.1 Расчет сил и моментов.

Коэффициент бокового давления со стороны грунта обратной засыпки K_{ah} по формуле (A.3):

$$K_{ah} = \frac{\cos^{2}(\phi_{b}' + \alpha_{b})}{\cos^{2}\alpha_{b} \left[1 + \sqrt{\frac{\sin(\phi_{b}' + \delta)\sin(\phi_{b}' - \beta)}{\cos(\alpha_{b} - \delta)\cos(\alpha_{b} + \beta)}}\right]^{2}} = \frac{\cos^{2}(30)}{\left[1 + \sqrt{\frac{\sin(30 + 20)\sin(30)}{\cos(20)}}\right]^{2}} = 0.279$$

при α =0, δ =20°, β =0, φ'_b =30°. По формулам (A.2), (A.4)

Горизонтальная составляющая суммарной активной силы:

$$E_{agh} = 0.5 \cdot K_{ah} \gamma_b \cdot H^2 = 0.5 \times 0.279 \times 20 \times 5^2 = 69.846 \text{ kH/m}.$$

Горизонтальная составляющая суммарной активной силы от внешней нагрузки:

$$E_{aph} = K_{ah} \cdot P \cdot H = 0.279 \text{x} 20 \text{x} 5 = 27.938 \text{кH/м}.$$

Вертикальная составляющая суммарной активной силы:

$$E_{agv} = E_{agh} \cdot tan(\delta) = 69.846 \times tan20 = 25.422 \kappa H/M (при $\delta = 2/3 tan\varphi'_{w}$).$$

Вертикальная составляющая суммарной активной силы от внешней нагрузки:

 $E_{apv} = E_{aph} tan(\delta) = 27.938 xtan 20 = 10.169 kH/m.$

Следовательно,

 E_{ah} = 69.846+27.938=97.784 кH/м;

 E_{av} = 25.422+10.169=35.591 кH/м.

Что создает опрокидывающий момент относительно центра длинны основания по формуле (A.6):

$$OTM = \left[E_{agh} \cdot \frac{H}{3} \right] + \left[E_{aph} \cdot \frac{H}{2} \right] - E_{agv} \left[L + \frac{H}{3} \tan \alpha_b \right] - E_{apv} \left[L + \frac{h}{2} \tan \alpha_b \right] =$$

= $(69.846x5/3)+(27.938x5/2)-(25.422x3.8/2)-(10.169x3.8/2)=118.632 \kappa H/m$.

Общий вес армогрунтового блока = $\gamma_W x H x L = 20 x 5 x 3.8 = 380.0 \text{ кH/м}$.

Опрокидывающий момент относительно центра длинны основания =0.00кНм/м.

Временная внешняя нагрузка на армогрунтовый блок = PxL=20x3.8=76.0кH/м.

Опрокидывающий момент относительно центра длины основания = 0.00кНм/м.

Б.2.2 Проверка на сдвиг.

По формуле (А.5)

коэффициент запаса = $\mu(W + E_{av})/E_{ah} = 0.8 \tan 30(20x5x3.8 + 35.591)/97.784 = 1.96$.

Это > 1.5 и приемлемо.

Б.2.3 Проверка несущей способности.

Для $\varphi'_{w}=30^{\circ}$:

 $N_c = 30.14$;

 $N_d = 18.40$;

 $N_b = 10.05$.

а) С учетом временной нагрузки:

Временная нагрузка располагается только слева от центра армогрунтового блока, что создает наиболее неблагоприятные условия нагружения.

По формуле (А.7) эксцентриситет = Момент/Вертикальная нагрузка =

(118.632+20x3.80/2x3.8/4)/(380+20x3.80/2+35.591)=0.3411 M.

Коэффициент наклона хь по формуле (А.10):

$$x_b = \left[1 - \frac{2x97.784}{2x(380 + 38 + 35.591)}\right]^3 = 0.4827.$$

По формуле (А.9) несущая способность = $y_{A}L'xN_{b}xx_{b}=20x(3.8+2x0.3411)x10.05x0.4827=302.497кH/м^{2}$

Допустимая нагрузка = 300,992x(3.8-2x0.3411)=943.125 кН/м.

Действующая общая вертикальная сила = 380+38+35.591=453.591 кH/м.

По формуле (А.13) коэффициент запаса=Допустимая нагрузка/ Действующая нагрузка = 943.125/453.591=2.079.

Что > 2.0 и приемлемо.

Б) С нагружением по всей длине:

Эксцентриситет = Момент/Вертикальная нагрузка = 118.632/(380+20x3.80+35.591)=0.2413м.

Коэффициент наклона x_b :

$$x_b = \left[1 - \frac{2x97.784}{2x(380 + 76 + 35.591)}\right]^3 = 0.5141.$$

Несущая способность =20x(3.8+2x0.2413)x10.05x0.5141=342.801кH/м².

Допустимая нагрузка=342.801х(3.8-2х0.2413)=1137.21 кН/м.

Действующая общая вертикальная сила 380+76+35.591=491.591 кH/м.

Коэф. Запаса=Допустимая нагрузка/ Действующая нагрузки = 1137.21/491.591=2.313.

Что больше 2.0 и приемлемо.

Б.3. Расчет внутренней устойчивости.

Первая георешетка Тенсар RE520 укладывается на отметке 0.000. Раскладка вышележащих георешеток приведена в таблице Б.2.

Таблица Б.2 – Раскладка георешеток по высоте армогрунтового блока

Марка	Кол-во слоев	Начальная	Вертикальный шаг	Конечная
георешетки		отметка (м)	(M)	отметка (м)
RE520	4	0.60	0.60	2.40
RE510	4	3.00	0.60	4.80

Горизонтальное покрытие поверхности армирования: 100%.

Всего слоев основного армирования: 9

Проектная прочность по формуле (А.1):

RE520=15.49kH/m;

RE510=10.60кH/м.

Б.3.1 Проверка клиньев

Расчет силы Z произведен по формуле (A.14), сведен в таблицу Б.3,

h- расстояние от верха стены до пересечения между клином и задней поверхностью армогрунтового блока.

Таблица Б. 3 — Сила Z, воздействующей на клин

Θ	h	G	P	tan(O-	Eagh	E_{agv}	E_{aph}	E_{apv}	c'L	Z
				φ'_b						
0	5.00	380.00	76.00	-0.70	64.33	37.14	25.73	14.86	0	-212.4
3	4.80	372.43	76.00	-0.62	59.30	34.24	24.71	14.26	0	-179.0
6	4.60	364.82	76.00	-0.55	54.46	31.44	23.67	13.67	0	-149.1
9	4.40	357.13	76.00	-0.49	49.77	28.74	22.63	13.07	0	-122.2
12	4.19	349.31	76.00	-0.42	45.22	26.11	21.57	12.46	0	-97.8
15	3.98	341.31	76.00	-0.36	40.79	23.55	20.49	11.83	0	-75.8
18	3.77	333.08	76.00	-0.31	36.48	21.06	19.38	11.19	0	-55.8
21	3.54	324.57	76.00	-0.25	32.27	18.63	18.22	10.52	0	-37.7
24	3.31	315.71	76.00	-0.19	28.16	16.26	17.02	9.83	0	-23.2
27	3.06	306.42	76.00	-0.14	24.15	13.94	15.77	9.10	0	-6.4
30	2.81	296.63	76.00	-0.09	20.26	11.70	14.44	8.34	0	7.0
33	2.53	286.23	76.00	-0.03	16.50	9.53	13.03	7.52	0	18.9
36	2.24	275.09	76.00	0.02	12.90	7.45	11.52	6.65	0	30.8
39	1.92	263.07	76.00	0.07	9.51	5.49	9.89	5.71	0	43.9
42	1.58	249.98	76.00	0.12	6.41	3.70	8.12	4.69	0	55.6
45	1.20	235.60	76.00	0.18	3.71	2.14	6.18	3.57	0	65.8
48	0.78	219.53	76.00	0.23	1.56	0.90	4.01	2.32	0	74.6
51	0.31	201.68	76.00	0.29	0.24	0.14	1.58	0.91	0	81.8
54	0	181.54	72.65	0.34	0	0	0	0	0	87.6
57	0	162.35	64.94	0.40	0	0	0	0	0	91.8
60	0	144.34	57.74	0.47	0	0	0	0	0	94.2
63	0	127.38	50.95	0.53	0	0	0	0	0	94.8
66	0	111.31	44.52	0.60	0	0	0	0	0	93.6
69	0	95.97	38.39	0.67	0	0	0	0	0	90.6
72	0	81.23	32.49	0.75	0	0	0	0	0	85.7
75	0	66.99	26.79	0.84	0	0	0	0	0	78.7
78	0	53.14	21.26	0.93	0	0	0	0	0	69.4

Продолжение	таблицы	Б.	3
		_	_

81	0	39.60	15.84	1.04	0	0	0	0	0	57.4
84	0	26.28	10.51	1.15	0	0	0	0	0	42.3
87	0	13.10	5.24	1.28	0	0	0	0	0	23.5

Для $\theta < \varphi'_{1}$ в расчет принимаются только внешние нагрузки постоянного действия.

Коэффициент бокового давления:

$$K_{ah} = \frac{\cos^2(30)}{\left[1 + \sqrt{\frac{\sin(30 + 30)\sin(30)}{\cos(30)}}\right]^2} = 0.2573.$$

Минимальная длина заделки решеток для обеспечения проектной прочности,

выведенная из уравнения (A.15) =
$$\frac{2T_d}{2\tan\phi'_{w}(yh_i+P)}$$
.

При P=0 для временной нагрузки:

RE510: минимальная длина =
$$\frac{10.6}{\tan 35(20h_i)}$$
;

RE520: минимальная длина =
$$\frac{15.49}{\tan 35(20h_i)}$$
.

 T_{ai} - допустимое усилие в i-ом слое георешетки по критерию выдергивания (сила анкеровки) по формуле (A.15).

При T_{ai} > проектной прочности г/р в расчет принимается проектная прочность.

При T_{ai} < проектной прочности г/р в расчет принимается T_{ai} .

Расчет удерживающей силы R сведен в таблицы Б.4 и Б.5 для заданных значений β .

Таблица Б.4—Определение R—удерживающей силы для клина при β =45° Слой Марка Проектная Уровень Міп Фактическая T_{ai}

Слой	Марка	Проектная	Уровень	Min	Фактическая	T_{ai}	Реализуемая
		прочность	(M)	требуемая	<i>L</i> (M)	(кН/м)	удержив-ая
		(кН/м)		<i>L</i> (M)			сила кН/м
1	RE520	15.49	0.00	0.23	3.80	319.29	15.49
2	RE520	15.49	0.60	0.26	3.20	241.99	15.49
3	RE520	15.49	1.20	0.30	2.60	174.77	15.49
4	RE520	15.49	1.80	0.35	2.00	117.63	15.49
5	RE520	15.49	2.40	0.44	1.40	50.98	15.49
6	RE510	10.60	3.00	0.36	0.80	33.61	10.60

Продолжение таблицы Б.3

7	RE510	10.60	3.60	0.51	0.20	3.92	3.90	
8	RE510	10.60	4.20	0.90	0.00	0.00	0.00	
9	RE510	10.60	4.80	3.60	0.00	0.00	0.00	

R=91.95кH/м;

Z=65.8 kH/m.

Условие прочности выполнено.

Таблица Б.5 — Определение R — удерживающей силы для клина при β =60°

Слой	Марка	Проектная	Уровень	Min	Фактическая	Tai	Реализуемая
		прочность	(M)	требуемая	<i>L</i> (M)	(кН/м)	удержив-ая
		(кН/м)		<i>L</i> (M)			сила кН/м
1	RE520	15.49	0.00	0.23	3.80	266.08	15.49
2	RE520	15.49	0.60	0.26	3.45	212.80	15.49
3	RE520	15.49	1.20	0.30	3.11	165.35	15.49
4	RE520	15.49	1.80	0.35	2.76	123.72	15.49
5	RE520	15.49	2.40	0.44	2.41	87.91	15.49
6	RE510	10.60	3.00	0.36	2.07	57.92	10.60
7	RE510	10.60	3.60	0.51	1.72	33.75	10.60
8	RE510	10.60	4.20	0.90	1.38	15.41	10.60
9	RE510	10.60	4.80	3.60	1.03	2.88	2.90

R = 112.15 kH/m;

Z=65.8кH/м.

Условие прочности выполнено.

Б.3.2 Сравнение приложенной силы с удерживающей позволяет определить удлинение георешеток (таблица Б.6).

Таблица Б.6 – Определение послестроительных деформаций.

Слой	Марка	Относительное удлинение (%)
1	RE520	0.00
2	RE520	0.15
3	RE520	0.33
4	RE520	0.51
5	RE520	0.67
6	RE510	0.65
7	RE510	0.66

Продолжение таблицы Б.б

8	RE510	0.60
9	RE510	0.27

Относительное удлинение <1.0%. Условие эксплуатационной пригодности выполнено.

Б.3.3 Проверка на сдвиг внутри армогрунта.

На уровне 0.00м от основания:

Угол Θ наиболее крутого клина, не пересекающего георешетки = $arctg(0.6/3.8) = 8,973^{\circ}$.

По формулам (А.2)-(А.4):

 $K_{ah}=0.2574$;

 $G=380-(0.5\times20\times3.8\times3.8\tan8.973)=357.199\kappa H/M;$

 $E_{agh} = 0.5 \times 0.2574 \times 20 \times (5-3.8 \tan 8.973)^2 = 49.83 \text{ kH/m};$

 E_{aph} =0.2574x20x(5-3.8tan8.973)=22.65 kH/m;

 $E_{agv} = 49.83 \text{xtan} 30 = 28.77 \text{ kH/m};$

 $E_{apv} = 22.65 \text{xtan} 30 = 13.08 \text{ kH/m};$

h- расстояние от верха стены до пересечения между клином и задней поверхностью армогрунтового блока.

Суммарная горизонтальная сила:

$$\Sigma H = E_{agh} + E_{aph} = 49.83 + 22.65 \text{ kH/m}.$$

Суммарная вертикальная сила:

$$\Sigma V = G = E_{agv} + E_{apv} = 357.199 + 28.77 + 13.08 = 399.049 \text{kH/m}.$$

Коэффициент запаса против скольжения в этом клине по уравнению (A.5) с компонентами по внутреннему сдвигу:

$$FoS = \frac{c'L\sec^2\Theta + (\Sigma V - \Sigma H\tan\Theta)\tan\varphi'_{w}}{\Sigma H + \Sigma V\tan\Theta} = \frac{(399.049 - 72.48\tan8.973)\tan35}{72.48 + 399.049\tan8.973} = 2.003.$$

Б.3.4 Проверка облицовки на разрыв.

На расстоянии 0.000м от основания:

$$Z_{max}$$
=94.8 κ H/M (β =63°).

S треугольника (рисунок Б.7) = 94,8=0,5x5x σ_{max} => σ_{max} =94.8/0.5x5=37.92кH/м².

$$E_{ah(max)} = 2/3 \times \sigma_{max} = 2/3 \times 37.92 = 25.28 \text{kH/m}^2$$
.

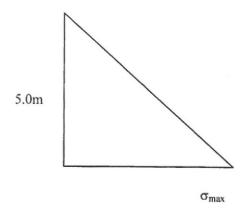


Рисунок Б.7 - Проверка облицовки

Данное усилие приложено на высоте 0.30м (шаг георешеток/2).

Нагрузка на георешетку = 0.3x25.25=7.58кH/м.

Проектная прочность георешетки RE520 (15.49кH/м> 7.58 кH/м.

Условие прочности выполнено.

Библиография

[1] Санитарно- эпидемиологические правила СП 2.2.2.1327-03	Гигиенические требования к организации технологических процессов, производственному оборудованию и рабочему инструменту. Санитарно-эпидемиологические правила
[2] Гигиенические нормативы ГН 2.2.5.1313-03	Химические факторы производственной среды. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны
[3] Федеральный закон Российской Федерации от 10.01.2002 №7	Об охране окружающей среды
[4] Федеральный закон Российской Федерации от 04.05.1999 № 96	Об охране атмосферного воздуха
[5] Федеральный закон Российской Федерации от 24.06.1998 № 89	Об отходах производства и потребления
[6] Отраслевой дорожный методический документ ОДМ 218.5.003-2010	Рекомендации по применению геосинтетических материалов при строительстве и ремонте автомобильных дорог
[7] Отраслевой дорожный методический документ ОДМ 218.2.027-2010	Рекомендации по расчету и проектированию армогрунтовых подпорных стен на автомобильных дорогах

OKC 59.080.70, 93.080.20

ОКПД2 22.21.42

Ключевые слова: георешетки одноосные, классификация, технические требования, упаковка, маркировка, приёмка, методы контроля, транспортирование и хранение, условия эксплуатации

Руководитель организации-разработчика ООО «Тенсар Инновэйтив Солюшнз» Генеральный директор

