

ГОСУДАРСТВЕННАЯ КОМПАНИЯ «РОССИЙСКИЕ АВТОМОБИЛЬНЫЕ ДОРОГИ» (ГОСУДАРСТВЕННАЯ КОМПАНИЯ «АВТОДОР»)

Страстной 6-р, д. 9, Москва, 127006 тел.:+7 495 727 11 95, факс: +7 495 784 68 04 http://www.russianhighways.ru, e-mail: info@russianhighways.ru

34.03.2017	Nº 3651-TI7
Ha №	ОТ

Генеральному директору ООО «МГК»

А.Н. Сертакову

195027, г. Санкт-Петербург, ул. Магнитогорская, д. 30, БЦ «Доминант», оф. 709

Уважаемый Антон Николаевич!

Рассмотрев актуализированные и дополненные материалы, представленные Вашим письмом от 14.03.2017 № 09/17, с учетом согласования от 28.08.2015 № 12254-ТП, согласовываем типовой проект «Трубы спиральновитые гофрированные металлические отверстием от 0,5 м до 3,0 м с параметрами гофрированного листа 68х13, 114х25, 125х26 и 150х50 мм на автомобильных дорогах общего пользования с учетом дорожно-климатических зон. Серия 3.503.3-115с.16, выпуск 0 «Материалы для проектирования» сроком до 28.08.2018.

Ежегодно в наш адрес необходимо направлять аналитический отчет с результатами мониторинга и оценкой применения изделий в соответствии с указанной типовой проектной документацией на объектах Государственной компании и прочих объектах.

Контактное лицо: директор Департамента проектирования, технической политики и инновационных технологий Черкасов Александр Викторович, тел. (495) 727-11-95, доб. 31-23, e-mail: A.Cherkasov@russianhighways.ru.

Заместитель председателя правления по технической политике

fleys?

И.Ю. Зубарев

Типовые строительные конструкции

Трубы спиральновитые гофрированные металлические отверстием от 0,5 м до 3,0 м с параметрами гофрированного листа 68х13, 114х25, 125х26 и 150х50 мм на автомобильных дорогах общего пользования с учетом дорожно-климатических зон

СЕРИЯ 3.503.3-115с.16

Выпуск 0

Материалы для проектирования

Типовые строительные конструкции

Трубы спиральновитые гофрированные металлические

отверстием от 0,5 м до 3,0 м с параметрами гофрированного листа 68х13, 114х25, 125х26 и 150х50 мм на автомобильных дорогах общего пользования с учетом дорожно-климатических зон

СЕРИЯ 3.503.3-115с.16

Выпуск 0

Материалы для проектирования

Разработаны ООО «МГК Проект»

Генеральный директор

Главный инженер проекта

Утверждены и введены в действие ООО «МГК» Приказ от 14.09.16 г. № 43

Ю. А. Лысенко

А. В. Литвиненко

ано		
Согласовано		

Обозначение Наименование		Стр.
3.503.3-115c.16-C	Содержание тома	2-3
3.503.3-115c.16-ПЗ	Пояснительная записка	4-25
3.503.3-115c.16-01	Таблица гидравлических величин	26-28
3.503.3-115c.16-02	Графики водопропускной способности труб	
3.503.3-115c.16-03	Гидравлические расчеты труб на каменной подсыпке	
3.503.3-115c.16-04	Графики расчетных давлений на грунт	31-34
3.503.3-115c.16-05	Номенклатура металлических элементов труб с полимерным покрытием. Гофр 68х13 мм	35
3.503.3-115c.16-06	Номенклатура металлических элементов труб с полимерным покрытием. Гофр 114x25 мм	36-38
3.503.3-115c.16-07	Номенклатура металлических элементов труб с полимерным покрытием. Гофр 125х26 мм	39-41
3.503.3-115c.16-08	Номенклатура металлических элементов труб с полимерным покрытием. Гофр 150х50 мм	
3.503.3-115c.16-09	Номенклатура металлических элементов труб с цинковым покрытием. Гофр 68х13 мм	
3.503.3-115c.16-10	Номенклатура металлических элементов труб с цинковым покрытием. Гофр 114х25 мм	46-48
3.503.3-115c.16-11	Номенклатура металлических элементов труб с цинковым покрытием. Гофр 125х26 мм	49-51
3.503.3-115c.16-12	Номенклатура металлических элементов труб с цинковым покрытием. Гофр 150х50 мм	52-54
3.503.3-115c.16-13	Номенклатура бетонных блоков. Гофр 125х26 мм	55
3.503.3-115c.16-14	Номенклатура бетонных блоков. Гофр 150х50 мм	56
3.503.3-115c.16-15	Блок бетонный Ф. Гофр 125x26 мм	57
3.503.3-115c.16-16	Блок бетонный Ф. Гофр 150х50 мм	58
3.503.3-115c.16-17	Сборный защитный лоток. Гофр 125х26 мм, Гофр 114х25 мм	59
3.503.3-115c.16-18	Сборный защитный лоток. Гофр 150х50 мм	60
3.503.3-115c.16-19	Конструкция трубы	61-66
3.503.3-115c.16-20	Секции с вертикально срезанным торцом для труб с полимерным покрытием с отверстием от 0,8 м до 3,0 м. Гофр 68х13,125х26, 150х50, 114х25 мм	67-69
3.503.3-115c.16-21	Секции с вертикально срезанным торцом для труб с покрытием из цинка с отверстием от 0,8 м до 3,0 м. Гофр 68х13,125х26, 150х50, 114х25 мм	70-72
3.503.3-115c.16-22	Секции со срезанным торцом для труб с отверстием от 1,5 до 3,0 м. Гофр 125х26, 114х25 мм	73

Обозначение	Наименование		
3.503.3-115c.16-23	Секции со срезанным торцом для труб с отверстием от 2,0 м до 3,0 м. Гофр 150х50 мм	74	
3.503.3-115c.16-24	Бандаж гофрированный В1	75	
3.503.3-115c.16-25	Бандаж гофрированный В2	76-77	
3.503.3-115c.16-26	Бандаж гофрированный ВЗ		
3.503.3-115c.16-27	Бандаж гофрированный В4	80-81	
3.503.3-115c.16-28	Трубы для обычных условий. Средняя часть трубы. Схема засыпки. Гофр 125х26 мм	82-83	
3.503.3-115c.16-29	Трубы северного исполнения. Средняя часть трубы. Схема засыпки. Гофр 125х26 мм	84-85	
3.503.3-115c.16-30	Трубы для обычных условий. Средняя часть трубы. Схема засыпки. Гофр 150х50 мм	86-87	
3.503.3-115c.16-31	Трубы северного исполнения. Средняя часть трубы. Схема засыпки. Гофр 150х50 мм	88-89	
3.503.3-115c.16-32	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 1. Гофр 125х26 мм	90-91	
3.503.3-115c.16-33	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 1 для отв. 1,5; 2x1,5; 3x1,5. Гофр 125x26 мм	92	
3.503.3-115c.16-34	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 1. Гофр 150х50 мм	93-94	
3.503.3-115c.16-35	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 1 для отв. 2,0; 2x2,0; 3x2,0. Гофр 150x50 мм	95	
3.503.3-115c.16-36	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 1а. Гофр 125х26 мм	96-97	
3.503.3-115c.16-37	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 1а для отв. 1,5; 2x1,5; 3x1,5. Гофр 125x26 мм	98	
3.503.3-115c.16-38	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 1а. Гофр 150х50 мм	99- 100	
3.503.3-115c.16-39	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 1а для отв. 2,0; 2x2,0; 3x2,0. Гофр 150x50 мм	101	
3.503.3-115c.16-40	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 2. Гофр 125х26 мм	102- 103	

2

						3.503.3-115c.	16-C		
1зм	Кол.	Лист	№ док	Подпись	Дата				
аз	раб.	Михайл	това	purce	09.16		Стадия		
lpo	роверил Шайдуллина		Mary	09.16		Р			
ИΠ	Литвиненко		Литвиненко		09.16	Содержание			
							MI		
. ко	нтр.	Лесков	а		09.16				

Стадия

Лист

МГК ПРОЕКТ

Листов

BHILLICK O

Обозначение

3.503.3-115c.16-41	оголовочной части трубы по типу 2 для отв. 2,8; 2x2,8; 3x2,8. Гофр 125x26 мм	104
3.503.3-115c.16-42	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 2. Гофр 150х50 мм	105- 106
3.503.3-115c.16-43	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 2 для отв. 2,8; 2x2,8; 3x2,8. Гофр 150x50 мм	107
3.503.3-115c.16-44	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 2а. Гофр 125х25 мм	108- 109
3.503.3-115c.16-45	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 2а для отв. 2,8; 2x2,8; 3x2,8. Гофр 125x26 мм	110
3.503.3-115c.16-46	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 2а. Гофр 150х50 мм	111- 112
3.503.3-115c.16-47	Трубы для обычных условий. Пример устройства оголовочной части трубы по типу 2а для отв. 2,8; 2x2,8; 3x2,8. Гофр 150x50 мм	113
3.503.3-115c.16-48	Схема труб для северных условий. Основные размеры для устройства оголовочной части трубы по типу 2а. Гофр 125х26 мм	114- 115
3.503.3-115c.16-49	Трубы для северных условий. Пример устройства оголовочной части трубы по типу 2а для отв. 2,8; 2x2,8; 3x2,8. Гофр 125x26 мм	116
3.503.3-115c.16-50	Схема труб для северных условий. Основные размеры для устройства оголовочной части трубы по типу 2а. Гофр 150х50 мм	117- 118
3.503.3-115c.16-51	Трубы для северных условий. Пример устройства оголовочной части трубы по типу 2а для отв. 2,8; 2x2,8; 3x2,8. Гофр 150x50 мм	119
3.503.3-115c.16-52	Трубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 125х26 мм	120
3.503.3-115c.16-53	Трубы в узких логах и прорезях. Схема расположения II (засыпка труб в прорези насыпи). Гофр 125х26 мм	121
3.503.3-115c.16-54	Трубы в узких логах и прорезях. Ведомости объемов работ по схеме I и схеме II. Гофр 125х26 мм	122
3.503.3-115c.16-55	Трубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 150х50 мм	123
3.503.3-115c.16-56	Трубы в узких логах и прорезях. Схема расположения II (засыпка труб в прорези насыпи). Гофр 150х50 мм	124
3.503.3-115c.16-57	Трубы в узких логах и прорезях. Ведомости объемов работ по схеме I и схеме II. Гофр 150х50 мм	125
	150x50 мм	

Наименование

Трубы для обычных условий. Пример устройства

Cmp.

Обозначение	Наименование	Стр.
3.503.3-115c.16-58	Трубы на косогорах	126
3.503.3-115c.16-59	Железобетонный тип укрепления. Конструкция укреплений у труб отв. 0,5-1,5 м	127- 128
3.503.3-115c.16-60	Железобетонный тип укрепления. Конструкция укреплений у труб отв. 1,5-3,0 м	129- 130
3.503.3-115c.16-61	Железобетонный тип укрепления. Ведомость объемов работ	131- 132
3.503.3-115c.16-62	Комбинированный тип укрепления. Конструкция укреплений у труб отв. 0,5-1,5 м	133- 134
3.503.3-115c.16-63	Комбинированный тип укрепления. Конструкция укреплений у труб отв. 1,5-3,0 м	135- 136
3.503.3-115c.16-64	Комбинированный тип укрепления. Ведомость объемов работ	137- 138
3.503.3-115c.16-65	Габионный тип укрепления. Конструкция укреплений у труб отв. 0,5-1,5 м	139- 140
3.503.3-115c.16-66	Габионный тип укрепления. Конструкция укреплений у труб отв. 1,5-3,0 м	141- 142
3.503.3-115c.16-67	Габионный тип укрепления. Ведомость объемов работ	143- 144
3.503.3-115c.16-68	Конструкция конца укрепления	145
3.503.3-115c.16-69	Укрепление каменной наброской	146

Изм	Кол.	Лист	№ док	Подпись	Дата

Типовая серия 3.503.3-115с.16 «Трубы спиральновитые гофрированные металлические отверстием от 0,5 м до 3,0 м с параметрами гофрированного листа 68х13, 114х25, 125х26 и 150х50 мм на автомобильных дорогах общего пользования с учетом дорожно-климатических зон» разработана на основании задания, выданного ООО «МГК». Серия состоит из выпуска 0 «Материалы для проектирования».

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

- 1.1 СВМГТ предназначены для использования во всех климатических районах Российской Федерации кроме территории северной строительно-климатической зоны. Исключением являются районы территории северной строительно-климатической зоны с наименее суровыми условиями по СП 131.13330.
- 1.2 В настоящей серии разработаны конструкции круглых спиральновитых металлических гофрированных труб (СВМГТ) для применения под насыпями автомобильных дорог общего пользования и подъездных путей предприятий (далее автомобильных дорог).

Проектные решения для СВМГТ из стали S275 EN 10025 (ГОСТ 19281), S280 EN 10346 (ГОСТ Р 52246) разработаны исходя из определения грузоподъемности и несущей способности при расчетной высоте насыпи над трубой. Для конструирования, контроля физико-химических свойств, контроля качества материала допускается использовать аналоговые марки стали 25 пс (ГОСТ 1050), 09Г2,09Г2С(ГОСТ 19281), 280 (ГОСТ Р 52246).

Конструкции труб разработаны для четырех типов гофра:

- гофр 68х13 мм трубы отверстиями 0,5 и 0,8 м;
- гофр 114х25 мм трубы отверстиями 1,0; 1,2; 1,5; 1,8; 2,0; 2,2; 2,5; 2,8 и 3,0 м;
- гофр 125х26 мм трубы отверстиями 1,0; 1,2;1,5; 1,8; 2,0; 2,2; 2,5; 2,8 и 3,0 м;
- гофр 150х50 мм трубы отверстиями 2,0; 2,2; 2,5; 2,8 и 3,0 м.

Толщина листа металлических труб:

- 2,0; 2,5; 3,0; 3,5 и 4,0 мм.
- 1.3 Проектирование спиральновитых металлических гофрированных труб с профилем 114x25 мм выполняется по предварительному согласованию с производителями СВМГТ.
- 1.4 Изготовление труб предусмотрено на специализированных предприятиях, либо на специальных мобильных комплексах. Все металлические конструкции разработаны для труб, сооружаемых под насыпями автомобильных дорог. Условия применения СВМГТ в зависимости от технической категории автомобильной дороги для разных типов земляного полотна приведены в разделах 4,5 настоящей документации.

- 1.5 Конструкция трубы состоит из секций полной заводской готовности максимальной рекомендуемой длиной 13,5 м, объединяемых между собой бандажами. Трубы изготавливаются из высокопрочной листовой стали класса прочности не ниже С265 по ГОСТ 19281, стали 5 й категории по ГОСТ 1577, ГОСТ 14637, ГОСТ 16523.
 - 1.6 В настоящей документации разработаны конструкции труб:
 - обычного исполнения во всех климатических районах, кроме территории северной строительно-климатической зоны;
 - северного исполнения в районах северной строительно-климатической зоны с наименее суровыми условиями.
- 1.7 Антикоррозионные покрытия предусмотрены по ГОСТ 9.307-89 и представлены в п. 3.1.
- 1.8 Конструкции укреплений для СВМГТ в настоящей документации разработаны с учетом скорости течения водного потока, грунта русла, геологических условий в месте проведения строительно-монтажных работ по устройству СВМГТ.
- 1.9 Оголовки труб разработаны в двух вариантах: с вертикально срезанными торцами и с торцами, срезанными параллельно откосу насыпи.
- 1.10 Разработка серии производилась с учетом требований следующих нормативных документов:
- ГОСТ 2.106-96* Единая система конструкторской документации (ЕСКД).
 Текстовые документы;
 - ГОСТ 2.114-95 ЕСКД. Технические условия;
- ГОСТ 9.014-78* Единая система защиты от коррозии и старения (ЕСЗКС). Временная противокоррозионная защита изделий. Общие требования;
- ГОСТ 9.302-88 (ИСО 1463-82, ИСО 2064-80, ИСО 2106-82) Единая система защиты от коррозии и старения (ЕСЗКС). Покрытия металлические и неметаллические неорганические. Методы контроля;
- ГОСТ 9.307-89 (ИСО 1461-89) Единая система защиты от коррозии и старения (ЕСЗКС). Покрытия цинковые горячие. Общие требования и методы контроля;
- ГОСТ 9.315-91 Единая система защиты от коррозии и старения (ЕСЗКС).
 Покрытия алюминиевые горячие. Общие требования и методы контроля;

						3.503.3-115c.	16-ПЗ		
Изм	Кол.	Лист	№ док	Подпись	Дата				
Разр	абот.	Михайл	ова	purity	09.16		Стадия	Лист	Листов
Про	верил	Шайдул	плина	Mary	09.16		Р	1	22
ГИП	1	Литви	ненко		09.16	Пояснительная записка			
				- 600			MIK		OEKT
$H \sim$	um	Προκορ	2	OPP .	00 16				

- ГОСТ 9.402-2004 Единая система защиты от коррозии и старения (ЕСЗКС).
 Покрытия лакокрасочные. Подготовка металлических поверхностей к окрашиванию;
- ГОСТ 9.410-88 Единая система защиты от коррозии и старения (ЕСЗКС).
 Покрытия порошковые полимерные. Типовые технологические процессы;
- ГОСТ 9.602-2005 Единая система защиты от коррозии и старения (ЕСЗКС). Сооружения подземные. Общие требования к защите от коррозии;
- ГОСТ 12.0.004-90 ССБТ. Организация обучения безопасности труда. Общие положения;
- ГОСТ 12.1.005-88* ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны;
- ГОСТ 12.1.007-76* ССБТ. Вредные вещества. Классификация и общие требования безопасности;
- ГОСТ 12.2.003-91 ССБТ. Оборудование производственное. Общие требования безопасности;
- ГОСТ 12.3.009-76* ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности;
- ГОСТ 12.3.005-75 ССБТ. Работы окрасочные. Общие требования безопасности;
 - ГОСТ 12.4.021-75* ССБТ. Системы вентиляционные. Общие требования
- ГОСТ 12.4.103-83 ССБТ. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация;
- ГОСТ 17.2.3.02-2014 Правила установления допустимых выбросов загрязняющих веществ промышленными предприятиями;
- ГОСТ 27.002-89 Надежность в технике. Основные понятия. Термины и определения;
- ГОСТ 166-89* (СТ СЭВ 704-77 СТ СЭВ 707-77; СТ СЭВ 1309-78, ИСО 3599-76) Штангенциркули. Технические условия;
 - ГОСТ 380-2005* Сталь углеродистая обыкновенного качества. Марки;
 - ГОСТ 427-75* Линейки измерительные металлические. Технические условия;
- ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия;
- ГОСТ 1577-93 Прокат толстолистовой и широкополосный из конструкционной качественной стали. Технические условия;
 - ГОСТ 3640-94 Цинк. Технические условия;
- ГОСТ 4543-71* Прокат из легированной конструкционной стали. Технические условия;

- ГОСТ 5915-70* Гайки шестигранные класса точности В. Конструкция и размеры;
 - ГОСТ 7470-92 Глубиномеры микрометрические. Технические условия;
 - ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия;
- ГОСТ 7566-94* Металлопродукция. Приемка, маркировка, упаковка, транспортирование и хранение;
- ГОСТ 7798-70* Болты с шестигранной головкой класса точности В.
 Конструкция и размеры;
 - ГОСТ 8026-92 Линейки поверочные. Технические условия;
- ГОСТ 9128-2013 Смеси асфальтобетонные, полимерасфальтобетонные, асфальтобетон, полимерасфальтобетон для автомобильных дорог и аэродромов. Технические условия;
 - ГОСТ 9812-74 Битумы нефтяные изоляционные. Технические условия;
 - ГОСТ 10354-82* Пленка полиэтиленовая. Технические условия;
- ГОСТ EN 12090-2011 Изделия теплоизоляционные, применяемые строительстве. Метод определения характеристик сдвига;
 - ГОСТ 12871-2013 Хризотил. Общие технические условия;
 - ГОСТ 14192-96* Маркировка грузов;
- ГОСТ 14637-89* (ИСО 4995-78) Прокат толстолистовой из углеродистой стали обыкновенного качества. Технические условия;
- ГОСТ 14918-80* Сталь тонколистовая оцинкованная с непрерывных линий. Технические условия;
- ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды;
- ГОСТ 15836-79 Мастика битумно-резиновая изоляционная. Технические условия;
- ГОСТ 16523-97 Прокат тонколистовой из углеродистой стали качественной и обыкновенного качества общего назначения. Технические условия;
- ГОСТ 17066-94 Прокат тонколистовой стали повышенной прочности.
 Технические условия;
- ГОСТ 19281-2014 Прокат повышенной прочности. Общие технические условия;
- ГОСТ 23735-2014 Смеси песчано-гравийные для строительных работ. Технические условия;

Изм	Кол.	Лист	№ док	Подпись	Дата

- ГОСТ 24297-2013 Верификация закупленной продукции. Организация поведения и методы контроля;
- ГОСТ 25051.4-83 Установки испытательные вибрационные электродинамические. Общие технические условия;
- ГОСТ 25607-2009 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия;
- ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления;
- ГОСТ 27751-2014 Надежность строительных конструкций и оснований.
 Основные положения;
- ГОСТ 27772-88* Прокат для строительных стальных конструкций. Общие технические условия;
 - ГОСТ 30416-2012. Грунты. Лабораторные испытания. Общие положения;
- ГОСТ 30546.1-98* Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости;
- ГОСТ 30546.2-98* Испытания на сейсмостойкость машин, приборов и других технических изделий. Общие положения и методы испытаний;
- ГОСТ 30630.1.1-99* Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Определение динамических характеристик конструкции;
- ГОСТ 30630.5.4-2013 (IEC 60721-2-6: 1990) Воздействие природных внешних условий на технические изделия. Общая характеристика. Землетрясения;
 - ГОСТ 30672-2012. Грунты. Полевые испытания. Общие положения;
- ГОСТ 32871-2014 Дороги автомобильные общего пользования. Трубы дорожные водопропускные. Технические требования;
- ГОСТ 33146-2014 Дороги автомобильные общего пользования. Трубы дорожные водопропускные. Методы контроля (Статус: Документ в силу не вступил. Дата начала действия: 01.08.2016);
 - ГОСТ ISO 9001-2011 Системы менеджмента качества. Требования
- ГОСТ Р 1.4-2004 Стандартизация в Российской Федерации. Стандарты организаций. Общие положения;
- ГОСТ Р 1.5-2012 Стандартизация в Российской Федерации. Стандарты национальные Российской Федерации. Правила построения, изложения, оформления и обозначения;

- ГОСТ Р ИСО 3269-2009 Изделия крепежные. Приемочный контроль;
- ГОСТ Р 52246-2004 Прокат листовой горячеоцинкованный. Технические условия;
- ГОСТ Р 52543-2006 (ЕН 982: 1996) Гидроприводы объемные. Требования безопасности;
- ГОСТ Р 52748-2007 Дороги автомобильные общего пользования.
 Нормативные нагрузки, расчетные схемы нагружения и габариты приближения;
- ГОСТ Р 53189-2008 (МЭК 60068-2-80: 2005) Методы испытаний на стойкость к механическим внешним воздействующим факторам машин, приборов и других технических изделий. Испытания на вибрацию с воспроизведением воздействий нескольких типов;
- ГОСТ Р 8.568-97* Государственная система обеспечения единства измерений (ГСИ). Аттестация испытательного оборудования. Основные положения
- ГОСТ Р 8.589-2001 Государственная система обеспечения единства измерений. Контроль загрязнения окружающей природной среды. Метрологическое обеспечение. Основные положения;
- ГОСТ Р 15.201-2000 Система разработки и постановки продукции на производство (СРПП). Продукция производственно-технического назначения. Порядок разработки и постановки продукции на производство;
- СП 12-135-2003 Безопасность труда в строительстве. Отраслевые типовые инструкции по охране труда;
- СП 28.13330.2012 Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85 (с Изменением N 1);
- СП 34.13330.2012 Автомобильные дороги. Актуализированная редакция СНиП 2.05.02-85*;
- СП 35.13330.2011 Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84* (нормы проектирования);
- СП 46.13330.2012 Мосты и трубы. Актуализированная редакция
 СНиП 3.06.04-91 (правила производства работ);
- СП 16.13330.2011 Стальные конструкции. Актуализированная редакция СНиП II-23-81*:
- СП 22.13330.2011 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*;
- СП 25.13330.2012 Основания и фундаменты на вечномерзлых грунтах. Актуализированная редакция СНиП 2.02.04-88;

Изм	Кол.	Лист	№ док	Подпись	Дата

- СП 14.13330.2014 Строительство в сейсмических районах (актуализированного СНиП II-7-81* «Строительство в сейсмических районах» (СП 14.13330.2011));
- СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99*;
- СП 991-72 Санитарные правила при окрасочных работах с применением ручных распылителей.
- СНиП 12-03-2001 Безопасность труда в строительстве. Часть 1. Общие требования;
- СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2. Строительное производство;
 - ОСТ 37.001.050-73 «Затяжка резьбовых соединений. Нормы затяжки»;
- ОДМ 218.2.001-2009 Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорог общего пользования с учетом региональных условий (дорожно-климатических зон (№252-р от 21.07.2009 г. Росавтодор);
- ВСН-АПК 2.30.05.001 03 Мелиорация. Руководство по защите земель, нарушенных водной эрозией. Габионные конструкции противоэрозионных сооружений.
- TP TC 014/2011 Технический Регламент таможенного союза. «Безопасность автомобильных дорог».
 - 1.11 Приняты расчетные временные подвижные нагрузки:
- для спиральновитых металлических гофрированных труб под насыпями автомобильных дорог A14, H14 согласно ГОСТ Р 52748 2007.
- 1.12 Расчетная несущая способность взаимодействующей системы "конструкция-грунт" определена для двух расчетных характеристик грунта засыпки: с компрессионным модулем деформации Erp=18 МПа и Erp=30 МПа (см. п. 8.7).

Кроме того, произведены, расчеты CBMГТ при строительстве на слабых грунтах. В этом случае предусматривается замена слоя слабого грунта.

1.13 Расчет спиральновитых металлических гофрированных труб выполнен с учетом сейсмического воздействия для районов с расчетной сейсмической активностью до 8 баллов включительно. При строительстве СВМГТ в районах с расчетной сейсмической активностью более 8 баллов каждое сооружение необходимо рассчитывать индивидуально, с учетом местных условий строительства и эксплуатации.

- 1.14 Для СВМГТ северного исполнения необходимо выполнить дополнительный расчет по I и II группам предельных состояний методом конечных элементов.
- 1.15 Для определения стоимости строительно-монтажных работ СВМГТ, примененных в проекте, внесены в справочники «Государственные сметные нормативы. Федеральные единичные расценки на строительные и специальные строительные работы» Часть 30 «Мосты и трубы»; Раздел 7. «Трубы водопропускные на готовых фундаментах (основаниях) и лотки водоотводные»; Подраздел 7.2. «Водопропускные трубы из гофрированного металла»; Таблица 30-07-012 «Укладка металлических гофрированных цельновитых водопропускных труб» утвержденные приказом министерства строительства Российской Федерации от 30 января 2014 г. № 31/пр, «Федеральные сметные цены на материалы, изделия и конструкции, применяемые в строительстве»; Часть І. «материалы для общестроительных работ» Подраздел: материалы для дорожного строительства; Группа: металлоконструкции; шифр ресурса 101-7770 101-7830.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

- 2.1 В настоящей серии разработаны конструкции СВМГТ из стали марки S275 по EN 10025 (ГОСТ 19281), S280 по EN10346 (ГОСТ Р 52246) с заводским защитным покрытием (п.3). Допускается применять марки стали аналоги (п.1.2) при обеспечении требуемой антикоррозионной защиты, нанесенной в заводских условиях.
- 2.2 СВМГТ по настоящей серии предназначены для применения в обычном и северном исполнении под насыпями автомобильных дорог общего пользования в соответствии с таблицами 8,9.
- 2.3 Таблица 10,11 на водотоках без процессов наледеобразования и карчеходов, в районах с сейсмической активностью до 8 баллов включительно.
- 2.4 Допустимые режимы протекания потоков в CBMГТ представлены в таблице 1.

Таблица 1

Режим	Трубы под насыпями автомобильных дорог			
протекания потока	Обычного исполнения	Северного исполнения		
Безнапорный	Без ограничений	Без ограничений		
Полунапорный	Не допускается	Не допускается		
Напорный	Не допускается	Не допускается		

Примечания

- 1. Под оголовками и секциями следует предусматривать фундаменты, а при необходимости также противофильтрационные экраны.
- 2. Следует обеспечивать водонепроницаемость швов между торцами секций СВМГТ и секциями фундаментов, надежное укрепление русла, устойчивость насыпи против напора и фильтрации воды.
 - 2.5 Укладка труб предусмотрена в следующих типах местности:

Таблица 2

	Характеристика			
Тип	Относительное		Поперечный	
местности	превышение местности, в радиусе 25 км	Характеристики рельефа	уклон трубы	
	раоцусе 23 км		om 0 002	
Равнинные	до 200 м	малая крутизна скатов	om 0,002	
		, ,	∂o 0,02	
Холмистые	om 200 м до 500 м	местность с	om 0,002	
AOTIMACITIBLE	0111 200 W 00 300 W	пересеченным рельефом	до 0,02	
		местность с		
Fam	500 · · · · 50 - 00	пересеченным рельефом	50-00 0 05	
Горные	500 м и более	и абсолютными высотами	не более 0,05	
		1000 м и более.		

Примечание

1. При критических значениях гидравлических параметров (поперечный уклон от 0,02 до 0,05) допускается применение оголовков по индивидуальным проектам.

- 2. Применение более крутых уклонов допускается при индивидуальном проектировании со специальными мероприятиями гашения скорости потока в трубе и на выходе из нее.
- 2.6 Конструкции CBMГТ разработаны для применения в следующих инженерногеологических условиях:
- при глубине промерзания до 3,0 м и наличии в основании грунтов с достаточной несущей способностью и для слабых грунтов основания с заменой слабого грунта;
 - при глубоком (более 3,0 м) сезонном промерзании грунтов;
- при наличии вечномерзлых грунтов основания (см. п. 2.7). В документации принято, что в этом случае верхняя граница вечномерзлого грунта расположена на глубине, равной расчетной глубине протаивания плюс толщина гравийно-песчаной подушки под средней частью трубы;
- на вечномерзлых грунтах, используемых в талом состоянии (по принципу II в соответствии со СП 25.13330.2012, СНиП 2.02.04-88).
- 2.7 СВМГТ на вечномерзлых грунтах должны проектироваться с учетом категории просадочности грунтов (см. таблицу 4), характеристика которых приведена в таблице 3.

Таблица 3

Категория просадоч- ности	Тип основания, относительное сжатие грунта	Вид грунтов основания
I	Слабосжимаемое $(прочное)$ $\delta \leq 0.05$	Основания, сложенные скальными породами, крупнообломочными и песчаными грунтами, а также глинистыми грунтами твердой и полутвердой консистенции после оттаивания
11	Среднесжимаемое $0,05 < \delta \le 0,1$	Основания, сложенные глинистыми грунтами тугопластичной и мягкопластичной консистенции, а также песчаными или крупнообломочными грунтами при наличии прослоев или линз льда
III	Сильносжимаемое (слабое) $0,1 < \delta \leq 0,4$	Основания, сложенные глинистыми грунтами текучепластичной и текучей консистенции, о также песчаными или крупнообломочными грунтами с включением линз льда. мори с мощностью торфа до 1,0 м
IV	Просадочное $\delta>0,4$	Участки с наличием подземного льда. мари с мощностью торфа более 1,0 м

Изм	Кол.	Лист	№ док	Подпись	Дата	

Таблица 4

Категория просадоч- ности	Ограничения при проектировании СВМГТ на вечномерзлых грунтах						
1	Допускается применение труб без ограничений						
11	Допускается при условии, что мощность слоя просадочных грунтов меньше величины сжимаемой толщи Z и осадка грунта основания может быть компенсирована строительным подъемом трубы. Величина сжимаемой толщи определяется по формуле: $Z = \left(2,1-0,6*\frac{\gamma}{9,81}\right)(2,5+1,2\mathrm{H})$ где H - высота насыпи, м; γ - объемный вес грунта насыпи, к H /м 3						
111	Допускается только при условии замены слоя слабого грунта подушкой из гравийно-песчаной смеси или другого малосжимаемого грунта						
IV	Не рекомендуется без применения специальных мер по недопущению оттаивания грунта						

2.8 Применение спиральновитых металлических гофрированных труб в районах с наименее суровыми условиями территории северной строительно-климатической зоны допускается при использовании труб с заводской двойной антикоррозионной защитой (п. 3.2) или при устройстве дополнительной защиты конструкции от коррозии, обмазочными материалами толщиной 1 мм с каждой стороны, на трубах с единственным защитным покрытием (п. 3.5).

Дополнительное защитное покрытие на трубах северного исполнения устраивается независимо от степени агрессивности среды и толщины цинкового покрытия.

2.9 При проектировании труб под автомобильную дорогу в сильноагрессивных условиях эксплуатации (см. таблицу 5) применяются только трубы с заводской двойной антикоррозионной защитой (п. 3.2). При обосновании в проектной документации допускается использование защитных лотков в СВМГТ с двойным основным защитным покрытием.

Таблица 5

	Boo	Водно-грунтовая среда				
Показатель степени агрессивного воздействия	Удельное сопротивлени е грунта, Ом	Концентрация Водородных ионов (общекислотная агрессивность), pH	Суммарная концентрация сульфата и хлорида, г/л	Зоны влажности территории РФ по СП 28.13330.2012 «Защита строительных конструкций от коррозии»		
Слабоагрессивная	Более 100	8,1-11,0	Менее 0,5	Сухая, нормальная		
		8,1-11,0	0,5-5,0			
Среднеагрессивная	100-10	8,0-6,0	Менее 0,5	Влажная		
		11,1-12,5	IVIGHEE U,U			
Сильноагрессивная	10-5	Любая	-	Влажная		

За общий показатель степени агрессивного воздействия принимается больший из показателей степени воздействия водно-грунтовой и воздушной сред.

- 2.10 Допускается применение спиральновитых металлических гофрированных труб под автомобильную дорогу при наличии блуждающих токов в окружающей среде только при использовании труб с заводской двойной антикоррозионной защитой (п. 3.2).
- 2.11 Допускается применение СВМГТ в узких логах и прорезях в насыпи, т.е. в тех условиях, когда в поперечном сечении лога не укладывается без искажения очертания засыпки, приведенной на документах конструкции средней части трубы.

Изм	Кол.	Лист	№ док	Подпись	Дата	

3. ЗАЩИТА ОТ КОРРОЗИИ

- 3.1 Спиральновитые металлические гофрированные трубы запроектированы в полной заводской готовности: с основным двойным антикоррозионным защитным покрытием (п. 3.2) и, при необходимости, с основным единственным цинковым защитным покрытием (п. 3.4).
 - 3.2 Двойное основное антикоррозионное защитное покрытие состоит из:
- цинкового покрытия массой не менее 720 г/м 2 на две стороны, толщиной не менее 50 мкм с каждой стороны.
- полимерного покрытия HDPE WProtect толщиной не менее 300 мкм с каждой стороны;

Двойная основная антикоррозионная защита наносится с внутренней и наружной поверхности трубы в заводских условиях:

- полимерное покрытие (полиэтилен высокой плотности низкого давления HDPE) наносится горячим способом методом ламинирования;
 - цинковое покрытие методом горячего цинкования.

Нанесение полимерного покрытия может быть односторонним или двусторонним по согласованию с автором типового альбома при соответствующем обосновании конструктивных решений, разработанных методом индивидуального проектирования СВМГТ.

При двойной основной антикоррозионной защите нанесения дополнительной защиты (п. 3.5) не требуется.

- 3.3 Двойная антикоррозионная (Таблица 6) защита обязательна при применении СВМГТ:
- в районах с наименее суровыми условиями территории северной строительно-климатической зоны (см. п. 2.8);
 - в сильноагрессивных условиях окружающей среды (см. п. 2.9);
 - при наличии блуждающих токов в окружающей среде (см. п. 2.10).
- 3.4 Допускается применять CBMГТ с единственным защитным покрытием: слой покрытия нанесенного методом горячего цинкования толщиной не менее 50 мкм с двух сторон, на вспомогательных и временных автомобильных дорогах, съездах, дорогах с малой интенсивностью движения, дорогах с переходным типом дорожной одежды.
- 3.5 Дополнительная защита требуется при применении CBMГТ с единственным защитным покрытием (п. 3.4). Дополнительную защиту необходимо устраивать в условиях мобильного крытого павильона, оборудованного на стройплощадке, с соблюдением температурных условий, приведенных в соответствующих инструкциях по нанесению материалов.

Способы и материалы для дополнительной защиты внутренней и наружной поверхностей труб от коррозии в зависимости от общего показателя степени агрессивного воздействия среды и климатических условий района ее эксплуатации приведены в п. 3.4, п. 3.5 и в «Инструкции по устройству гидроизоляции конструкций мостов и труб на автомобильных дорогах с использованием новых материалов при производстве капитального ремонта», Москва, ФГУП ВНИИЖТ, 2005 г., ОДМ 218.2.001-2009.

3.6 Для предохранения металлических конструкций водопропускных труб отв. 1,0-3,0 м от абразивного износа твердыми частицами, взвешенными в потоке, в СВМГТ с единственным защитным покрытием устраивается защитный лоток с углом охвата 120°.

В трубах отв. 0,5 и 0,8 м для защиты от абразивного износа предусматривается применение труб с двойным защитным покрытием из цинка и полиэтилена низкого давления HDPE — высокой плотности.

Для труб с единственным цинковым защитным покрытием применяют бетонные, битумно-минеральные, полимерные, битумно-полимерные, асфальтобетонные лотки и другие материалы.

Для труб с двойным защитным покрытием (п. 3.2) при сложных гидравлических условиях (высокая скорость водного потока) в сильноагрессивной среде необходимо применять защитные лотки, в остальных случаях применение лотков не требуется.

Полимерный бетон принимается в соответствии с «Рекомендациями по технологии изготовления полимерных бетонов и применению их в транспортном строительстве» Москва, ЦНИИС, 1974 г.).

Предусмотрено три типа блока (для гофра 114x25 мм, 125x26 мм, 150x50) для всех отверстий труб.

Конструкция сборного лотка состоит из отдельных блоков (конструкция блоков приведена на документах — 17, 18) нижняя поверхность которых формуется по очертанию гофра, а верхняя - гладкая.

Для того, чтобы получить необходимый размер защищаемой поверхности в поперечном сечении трубы укладываются от 8 до 22 блоков, в зависимости от диаметра трубы.

Блоки лотков укладываются на очищенную от грязи поверхность трубы по слою битумно-резиновой мастики МБР-65.

Образующиеся за счет несовпадения кривизны блока и поверхности трубы пустоты должны быть заполнены резино-битумной мастикой МБР-65.

Изм	Кол.	Лист	№ док	Подпись	Дата

Толщина лотка как сборного, так и монолитного принимается равной высоте гофра плюс 2 см. Лоток укладывается непрерывным по всей длине трубы. Технология укладки лотка должна соответствовать указаниям ОДМ 218.2.001-2009. 3.503.3-115c.16-ПЗ Изм Кол. Лист № док Подпись Дата

T_{2}	эб			12	6
Ιć	10	JΙL	ш	17	n

пемпера- тура в зоне										защита															
7.7			Конструкция з	защитного покрытия	1					Конструкция защитного покрытия															
				Дополнительного				Тип покрытия и			Тип покрытия и														
ксплуата-	Основног		Внутренней	Наружной	поверхн	ости трубі		способ нанесе-			способ нанесе														
ии трубы, °С	0	Марка по- крытия	поверхности трубы	Материал	Кол. слоев	Толщина слоя, мм	Общая тол- щина, мм	ния	Осно	ОЗОНВО	ния														
		<i>Б-2 или Б-</i> 3		Битумная грун- товка	1	0,2-0,3	-																		
Om +45°C ∂o - 20°C		Б-2	Защитный лоток из	Мастика мБР-65 Битуминоль Н-1 или мастика мБР-9 0	1	2,0 1,5-2,0	3,7-4,3	Битумные наполненные наносятся по- слойно набрызгом или кистью																	
		Б-3	асфальтобетона	Битуминоль Н-2 Битуминоль Н-1 или мастика мБР-9 0	1 1	2,0 1,5-2,0	3,7-4,3		слойно набрызгом или	слойно набрызгом или															
Om +35°C -40°C	Цинковое покрытие	Б-1 ¹	Защитный лоток из асфальтобетона	Битумная грун- товка Мастика мБР-65	1 1	0,2-0,3 2,0	2,2-2,3		Manual Co.		Наносится с двух сторон на														
не мел 720 г.	не менее 720 г/м²	3-1 или 3- 2	Защитный лоток из асфальтобетона	-	-	-	-	Полимерные ла- кокрасочные массой наносятся пнев- матическим 720 г/м² на	покрытие массой	покрытие формиј госкрытие госкр	металл до формировани гофры в за-														
-40°C		3-1	Эмаль ЭП-1155		2	0,12-0,15	0,25-0,30		им 720 г/м² на материала НDРЕ стороны, толщиной толщиной не менее ≥300 мкм с каждой роны		водских усло-														
	толщино	3-2	Грунт ЭКГ Краска ЭКК-100	Грунт ЭКГ Краска ЭКК-100	1 2	0,05 0,15-0,2	0,35-0,45			виях: цинковое ме- тодом горячего цинкования, Полимерное покрытие - горячим спосо-															
Om +45°C ∂o -20°C	менее 42 мкм с каждой стороны	ПБТ-4 или ПБТ-5	Защитный лоток из асфальтобетона Пластбитулен Битудиен	Пластбитулен Битудиен	- 1 1	- 2,0 1,5	- 2,0 1,5																		
От +35°C -40°C	ПБТ-6	Защитный лоток из асфальтобетона Пластибутиен	Пластбитулен	1	2,0	2,0	наносятся по- гружателем	стороны		бом методо ламинировани															
Ниже		3-1 или 3- 2	Защитный лоток из асфальтобетона	-	-	-	-	Полимерные ла-	ные																
-40°C		3-1	Эмаль ЭП-1155	Эмаль ЭП-1155	2	0,12-0,15	0,25-0,3	<i>— матическим</i>																	
		3-2	Грунт ЭКГ Краска ЭКК-100	Грунт ЭКГ Краска ЭКК-100	1 2	0,05 0,15-0,2	0,35-0,45																		
Or Or	m +35°C -40°C Ниже -40°C m +45°C -20°C m +35°C -40°C	m +35°C -40°C	m +45°C 5-2 o - 20°C 5-3 m +35°C Цинковое покрытие массой не менее 720 г/м² на две стороны, толщино й не менее 42 мкм с каждой стороны 3-1 или 3-2 m +45°C 42 мкм с каждой стороны ПБТ-4 или ПБТ-5 m +35°C 70°C -40°C 75 или 3-2 т +35°C 75 или 3-2 -40°C 75 или 3-2 т +35°C 75 или 3-2 -40°C 3-1 или 3-2 3-1 3-2	т +45°C 0 - 20°C т +35°C -40°C Ниже -40°C т +35°C 0 - 20°C Ниже -40°C т +35°C 0 - 20°C Ниже -40°C т +35°C 0 - 20°C т +35°C 0 - 40°C т +35°C 0 - 20°C т +35°C 0 - 20°C	т +45°C 0 - 20°C т +35°C -40°C т +45°C -40°C Т +40°C Т +40°C Т +40°C Т +40°C Т +40°C	т +45°C 0 - 20°C	т +45°C о - 20°C	т +45°C о -20°C т +45°C о -20°C т +45°C о -20°C т +35°C -40°C т +45°C о -20°C т +45°C о -20°C т +35°C -40°C т +45°C о -20°C т +45°C о	т +45°C о - 20°C	## 445°C 0 - 20°C Безараты бетона не менее ит +45°C 0 - 20°C Состобно на бетороны, топицино деть и состобно на бетороны толь и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны топицино деть и не менее ит +45°C 0 - 20°C Состобно на бетороны и не менее ит +45°C 0 - 20°C Состобно на бетороны и не менее ит +45°C 0 - 20°C Состобно на бетороны и не менее	## 45°C 0 - 20°C														

1. С применением мастики МБР-65, изготовленной компаундированием мастики МБР-90; 2. Допускается по согласованию с автором типового альбома применение других защитных покрытий по своим свойствам отвечающих требованиям, предъявляемым к покрытиям для металлических гофрированных труб.

	•				
Изм	Кол.	Лист	№ док	Подпись	Дата

4. КОНСТРУКЦИЯ СРЕДНЕЙ ЧАСТИ ТРУБЫ

- 4.1 Минимальная толщина засыпки, согласно СП 35.13330.2011 (таблица 5.1), над СВМГТ равна 0,8 м от свода трубы до верха проезжей части. Необходимо соблюдать условие минимальной толщины слоя из оптимального грунта, который равен 0,5 м и определяет минимальную допустимую высоту грунтовой обоймы над СВМГТ. Оптимальным грунтом называют грунт с тщательно подобранным зерновым составом, в котором все щебеночные частицы (35—70%) не превышают размера 50 мм и песчаные частицы (24—54%) размером от 5 мм до 0,1 мм, образующие скелет, касаются друг друга, промежутки между ними заполняют пылеватые частицы (не более 10%) размером менее 0,1 мм, а между последними — глинистые частицы (не более 2%) размером менее 0,005 мм. Заданный фракционный состав имеет свойство сохранения в неблагоприятных условиях свойств грунта, присущих его сухому состоянию. Такие грунты имеют наибольшую плотность, медленно размокают и оказывают наибольшее сопротивление внешнему давлению. Встречаются природные грунты оптимального состава, но большей частью их образуют путем добавления в определенной пропорции (например, смеси С5, С6 по ГОСТ 25607-2009), указанной в проектной документации.
- 4.2 Толщина проката стали для спиральновитых металлических гофрированных труб на дорогах общего пользования обычного исполнения должна быть не менее 2,5 мм. То же, для труб северного исполнения не менее 4,0 мм. Трубы из металла толщиной 2,0 мм применяются на временных автомобильных дорогах, при устройстве временного водотока на срок не более пяти лет.
- 4.3 Предельные высоты засыпки над трубой для труб под автомобильные дороги, в зависимости от отверстия трубы, толщины металла и модуля деформации грунта призмы засыпки с учетом количества полос движения приведены в таблицах 8, 9, 10.11.
- 4.4 В настоящей серии приведены конструкции труб и расчетные высоты насыпи при грунтах засыпки с компрессионным модулем деформации (Егр) не менее 18 МПа.

Трубы при грунтах засыпки с компрессионным модулем деформации 30 МПа и более могут применяться только при обеспечении особенно тщательного контроля (ГОСТ 30416-2012, ГОСТ 30672-2012) с привлечением проектной организации - автора проекта сооружения, за соблюдением технологии засыпки СВМГТ, технологии сборки, соответствия качества грунта засыпки и его уплотнения требованиям СП 22.13330.2011, ОДМ 218.2.001-2009.

- 4.5 Полностью смонтированные трубы укладываются на гравийно-песчаную подушку. Трубы с единственным основным защитным покрытием укладываются только после нанесения дополнительной антикоррозионной защиты и оборачивания геосинтетическим материалом.
- 4.6 Толщина гравийно-песчаной подушки назначается с учетом строительного подъема. Минимальная толщина подушки под нижней точкой трубы в зависимости от условий применения приведена таблице 7.

Таблица 7

Толщина гравийно-песчаной подушки, м							
Vogocus spunoucus		Отверстие трубы	I, M				
Условия применения	0,5-2,0	2,2	2,5-3,0				
Трубы обычного исполнения	0,4	0,45	0,5				
Трубы северного исполнения	0,7	0,7	0,7				

- 4.7 На талых слабых, слабых в оттаявшем состоянии, а также на сильносжимаемых грунтах, подстилаемых более прочными грунтами, толщина гравийно-песчаной или скальной подушки определяется расчетом с соблюдением требований, изложенных в СП 35.13330.2011. При этом ширина подушки поверху поперек оси трубы (В) принимается равной:
 - для одноочковых труб B = D+2z, но не менее 4,0 м;
 - для многоочковых труб B = nD+(n-1)I+2z,
 - где D диаметр (отверстие) трубы, м;
 - z толщина подушки, считая от лотка трубы, м;
 - п число очков в сооружении;
 - I расстояние между отдельными очками трубы в свету, м.
- 4.8 Толщину подушки, в зависимости от высоты насыпи и несущей способности подстилающего слоя, можно определить по графику на докум. -04.

Изм	Кол.	Лист	№ док	Подпись	Дата

4.9 Основание подушки устраивается с общим уклоном, равным заданному в проекте, а труба - со строительным подъемом, осуществляемым за счет изменения толщины гравийно-песчаной подушки по длине трубы.

Предоставленные объемы земляных работ и необходимых материалов для гофрированного профиля 114х25 мм принимаются по аналогии для гофрированного профиля 125х26 мм.

Трубы с профилем 125х26 (114х25) под автомобильную дорогу

Модуль деформации грунта засыпки

Таблица 8 Устройство насыпи/засыпки земляного полотна для 2х-полосной а/д

Отверстие	Толщина	не менее 18 МПа Не менее 30 М			
трубы, м	металл				
, ,	а, мм	Высота	Высота	Высота	Высота
		засыпки, м	насыпи, м	засыпки, м	насыпи, м
0,5; 2x0,5;	2,0	0,8 - 24,5	1,0 - 24,7	0.8 - 25.6	1,0 – 25,8
3x0,5					
0,8; 2x0,8;	2,0	0,8 - 13,0	1,3 – 13,5	0,8 - 14,1	1,3 – 14,6
3x0,8	2,5	13,0 – 16,0	13,5 – 16,5	14,1 – 17,3	14,6 – 17,8
<u> </u>	3,0	16,0 – 18,7	16,5 – 19,2	17,3 – 20,0	17,8 – 20,5
	2,0	0,8 – 9,9	1,5 – 10,6	0,8 - 10,9	1,5 – 11,6
1,0; 1,0x2;	2,5	9,9 – 12,0	10,6 – 12,7	10,9 – 13,1	11,6 – 13,8
1,0x3	3,0	12,0 – 14,1	12,7 – 14,8	13,1 – 15,3	13,8 – 16,0
1,023	3,5	14,1 – 16,2	14,8 – 16,9	15,3 – 17,6	16,0 – 18,3
	4,0	16,2 – 18,4	16,9 – 19,1	17,6 – 19,8	18,3 – 20,5
	2,0	0.8 - 8.0	1,7 – 8,9	0.8 - 8.9	1,7 – 9,8
1,2; 1,2x2;	2,5	8,0-9,7	8,9 — 10,6	8,9 – 10,8	9,8 – 11,7
1,2, 1,2x2, 1,2x3	3,0	9,7 – 11,3	10,6 – 12,1	10,8 – 12,5	11, 7 – 13,4
1,235	3,5	11,3 – 13,0	12,1 – 13,9	12,5 – 14,3	13,4 – 15,2
	4,0	13,0 – 14,8	13,9 – 15,6	14,3 – 16,0	15,2 – 16,9
	2,5	0.8 - 7.7	2,0-8,9	0.8 - 8.7	2,0-9,9
1,5; 1,5x2;	3,0	7,7 – 8,9	8,9 — 10,1	8,7 – 10,0	9,9 – 11,2
1,5x3	3,5	8,9 - 10,2	10,1 – 11,4	10,0 – 11,3	11,2 – 12,5
	4,0	10,2 – 11,5	11,4 – 12,7	11,3 – 12,7	12,5 – 13,9
	2,5	0.8 - 6.6	2,3-8,1	0,8 - 7,5	2,3-9,0
1,8; 1,8x2;	3,0	6,6 – 7,5	8,1-9,0	7,5 – 8,6	9,0 -10,1
1,8x3	3,5	7,5 – 8,5	9,0 — 10,0	8,6 – 9,7	10,1 – 11,2
	4,0	8,5 – 9,5	10,0 – 11,0	9,7 – 10,8	11,2 – 12,3
	2,5	0,8 - 6,1	2,5-7,8	0,8 - 7,1	2,5 - 8,8
2,0; 2,0x2;	3,0	6,1-6,9	7,8 – 8,6	7,1 – 8,0	8, 8 - 9, 7
2,0x3	3,5	6,9 – 7,8	8,6-9,5	8,0 - 9,0	9,7 – 10,7
	4,0	7,8 – 8,7	9,5 – 10,4	9,0-9,9	10,7 – 11,6
2,2; 2,2x2;	3,0	0,8 - 7,3	2,7-9,2	0,8 - 7,5	2,7-9,3
2,2, 2,2x2, 2,2x3	3,5	7,4 – 8,4	9,2 – 10,3	7,5 – 8,5	9,3 – 10,1
2,23	4,0	8,4 - 9,5	10,3 - 11,4 3,0 - 8,3	8,5 - 9,4 0,8 - 6,4	10,1 – 11,3 3,0 – 8,6
2 5· 2 5v2·	3,0	8,4 - 9,5 0,8 - 6,1			
2,5; 2,5x2; 2 5×3	3,5	6,1 – 6,8	8,3-9,0	6,4-7,3	, ,
2,5x3	4,0	6,8 - 7,5 0,8 - 5,5	9,0-9,7	7,3 – 8,5	9,5 – 10,7
2 8· 2 8·2·	3,0	0.8 - 5.5	3,3 - 8,0	0.8 - 5.5	3,3 - 8,0
2,8; 2,8x2;	3,5	5,5 - 6,3	8,0-8,8	5,5 - 6,4	8,0-8,9
2,8x3	4,0	6,3 - 7,2	8,8-9,7	6,4 - 7,2 0,8 - 5,9	8,9-9,7
3,0; 3,0x2;	3,5	0.8 - 5.8	7,8 - 8,5	0,8 - 5,9	7,8 - 8,6

	Трубы с профилем 125x26 (114x25) под автомобильную дорогу					
Omaanamua	To =	Модуль деформации грунта засыпки				
Отверстие трубы, м	Толщина	Не мене	е 18 МПа	Не менее 30 МПа		
піруоы, м	металл а, мм	Высота Высота		Высота	Высота	
	a, iviivi	засыпки, м	насыпи, м	засыпки, м	насыпи, м	
3,0x3	4,0	5,8-6,6	8,5 - 9.3	5,9 - 6,7	8,6 - 9,4	

Таблица 9 Устройство насыпи/засыпки земляного полотна для 4х-полосной и более а/д

	Трубы с профилем 125x26 (114x25) под автомобильную дорогу							
Omagnamua	Толщина Модуль деформации грунта засыпки							
Отверстие	=	Не мене	е 18 МПа	Не мене	ее 30 МПа			
трубы, м	металл	Высота	Высота	Высота	Высота			
	а, мм	засыпки, м	насыпи, м	засыпки, м	насыпи, м			
0,5; 2x0,5; 3x0,5	2,0	0.8 - 21.7	1,0 - 21,9	0.8 - 22.9	1,0 - 23,1			
	2,0	0,8 - 11,5	1,3 – 12,0	0,8 - 12,9	1,3 – 13,4			
0,8; 2x0,8; 3x0,8	2,5	11,5 – 14,3	12,0 – 14,8	12,9 – 16,0	13,4 – 16,5			
	3,0	14,3 – 17,1	14,8 – 17, 6	16,0 - 18,7	16,5 – 19,2			
	2,0	0.8 - 8.7	1,5 – 9,4	0.8 - 9.7	1,5 – 10,4			
	2,5	8,7 – 10,9	9,4 – 11, 6	9,7 - 12,0	10,4 – 12,7			
1,0; 1,0x2; 1,0x3	3,0	10,9 – 12,9	11,6 – 13,6	12,0 - 14,2	12,7 – 14,9			
	3,5	12,9 – 15,1	13,6 – 15,8	14,2 – 16,5	14,9 – 17,2			
	4,0	15,1 – 17,3	15,8 – 18,0	16,5 – 18,8	17,2 – 19,5			
	2,0	0.8 - 7.2	1,7 – 8,1	0.8 - 8.2	1,7 – 9,1			
	2,5	7,2 - 8,8	8,1 – 9,7	8,2 - 9,8	9,1 – 10,7			
1,2; 1,2x2; 1,2x3	3,0	8,8 - 10,3	9,7 – 11,2	9,8– 11,5	10,7 – 12,2			
	3,5	10,3 – 12,0	11,2 – 12,9	11,5 – 13,3	12,2 – 14,2			
	4,0	12,0 - 13,7	12,9 – 14,6	13,3 – 15,2	14,2 – 16,1			
	2,5	0,8 - 7,1	2,0 - 8,3	0.8 - 8.0	2,0 - 9,2			
1 5: 1 5v2: 1 5v2	3,0	7,1 – 8,2	8,3 - 9,4	8,0-9,3	9,2 – 10,5			
1,5; 1,5x2; 1,5x3	3,5	8,2-9,4	9,4 – 10,6	9,3 – 10,6	10,5 – 11,8			
	4,0	9,4 - 10,7	10,6 – 11,9	10,6 - 12,0	11,8 – 13,2			
	2,5	0,8 - 6,1	2,3 - 7,6	0.8 - 7.0	2,3 - 8,5			
1,8; 1,8x2; 1,8x3	3,0	6,1 - 7,0	7,6 – 8,5	7,0 - 8,0	8,5 – 9,5			
1,0, 1,0x2, 1,0x3	3,5	7,0 — 8,0	8,5 – 9,5	8,0 - 9,1	9,5 – 10,6			
	4,0	8,0 - 9,0	9,5 – 10,5	9,1 – 10,2	10,6 – 11,7			
	2,5	0,8-5,7	2,5 - 7,4	0.8 - 6.7	2,5 – 8,4			
2,0; 2,0x2; 2,0x3	3,0	5,7 – 6,5	7,4 - 8,2	6,7-7,5	8,4-9,2			
2,0, 2,0,2, 2,0,3	3,5	6,5 – 7,3	8,2-9,0	7,5 – 8,5	9,2 – 10,2			
	4,0	7,3 – 8,2	9,0 - 9,9	8,5 – 9,5	10,2 – 11,2			
	3,0	0.8 - 6.1	2,7 - 8,0	0,8 - 7,1	2,7 – 9,0			
2,2; 2,2x2; 2,2x3	3,5	6,1 – 6,9	8,0 - 8,8	7,1 – 8,0	9.0 - 9.9			
	4,0	6,9 - 7,6	8,8 – 9,5	8,0-9,0	9,9 – 10,9			
	3,0	0,8 - 5,8	3,0-8,0	0,8 - 6,1	3,0 - 8,3			
2,5; 2,5x2; 2,5x3	3,5	5,8 – 6,4	8,0 - 8,6	6,1-7,0	8,3 - 9,2			
	4,0	6,4 - 7,1	8,6 - 9,3	7,0 - 8,0	9,2 – 10,2			
	3,0	0.8 - 5.3	3,3 – 7,8	0,8 - 5,3	3,3 – 7,8			
2,8; 2,8x2; 2,8x3	3,5	5,3 - 6,0	7,8 — 8,5	5,3 - 6,1	7,8 – 8,6			
	4,0	6,0 - 6,8	8,5 – 9,3	6,1 - 7,0	8,6 – 9,5			
3,0; 3,0x2; 3,0x3	3,5	0,8 - 5,6	2,7 - 8,3	0,8 - 5,7	2,7 - 8,4			
0,0,0,0,2,0,0	4,0	5,6 - 6,3	8,3-9,0	5,7 - 6,4	8,4-9,1			

Изм	Кол.	Пист	№ док	Подпись	Лата

Таблица 10 Устройство насыпи/засыпки земляного полотна для 2х-полосной а/д

	Трубы с профилем 150x50 под автомобильную дорогу					
Отверстие	Толщина	Mod	дуль деформаці	ии грунта зась	ІПКИ	
трубы, м		Не менес	е 18 МПа	Не мене	е 30 МПа	
ттруоы, м	металл	Высота	Высота	Высота	Высота	
	а, мм	засыпки, м	насыпи, м	засыпки, м	насыпи, м	
	2,5	0,8 – 17,8	1,5 – 18,5	0,8 - 18,7	1,5 – 19,4	
1,0; 1,0x2; 1,0x3	3,0	17,8 - 20,9	18,5 - 21,6	18,7 - 22,0	19,4 - 22,7	
1,0, 1,0,2, 1,0,3	3,5	20,9 - 24,0	21,6 – 24,7	22,0 - 25,3	22,7 - 26,0	
	4,0	24,0 - 27,1	24,7 – 27,8	25,3 - 28,5	26,0 - 29,2	
	2,5	0,8 - 14,2	1,7 – 15,1	0,8 – 15,0	1,7 – 15,9	
1,2; 1,2x2; 1,2x3	3,0	14,2 – 16,6	15,1 – 17,5	15,0 – 17,6	15,9 – 18,5	
1,2, 1,2,2, 1,2,3	3,5	16,6 – 19,0	17,5 – 19,9	17,6 – 20,1	18,5 – 21,0	
	4,0	19,0 – 21,4	19,9 – 22,3	20,1 – 22,7	21,0 – 23,6	
	2,5	0,8 - 10,8	2,0 – 12,0	0,8 - 11,65	2,0 – 12,85	
1,5; 1,5x2; 1,5x3	3,0	10,8 – 12,7	12,0 – 13,9	11,65 – 13,6	12,85 – 14,8	
1,0, 1,0,2, 1,0,0	3,5	12,7 – 14,5	13,9 – 15,7	13,6 – 15,45	14,8 – 16,65	
	4,0	14,5 – 16,2	15,7 – 17,4	15,45 – 17,35	16,65 – 18,55	
	2,5	0,8 - 8,8	2,3 – 10,3	0,8 - 9,55	2,3 – 11,05	
1,8; 1,8x2; 1,8x3	3,0	8,8 -10,3	10,3 -11,8	9,55 - 11,15	11,05 - 12,65	
1,0, 1,0,2, 1,0,3	3,5	10,3 – 11,7	11,8 – 13,2	11,15 – 12,65	12,65 – 14,15	
	4,0	11,7 – 13,1	13,2 – 14,6	12,65 – 14,1	14,15 – 15,6	
	2,5	0,8 - 7,9	2,5 – 9,6	0,8 - 8,6	2,5 – 10,3	
2,0; 2,0x2; 2,0x3	3,0	7,9 – 9,2	9,6 – 10,9	8,6 – 10,0	10,3 – 11,7	
2,0, 2,0,2, 2,0,3	3,5	9,2 – 10,45	10,9 – 12,15	10,0 – 11,3	11,7 – 13,0	
	4,0	10,45 – 11,65	12,15 – 13,35	11,3 – 12,6	13,0 – 14,3	
	3,0	0,8 - 8,35	2,7 - 10,25	0,8 — 9,15	2,7 – 11,05	
2,2; 2,2x2; 2,2x3	3,5	<i>8,35</i> – <i>9,45</i>	10,25 – 11,35	9,15 – 10,3	11,05 – 12,2	
	4,0	9,45 – 10,55	11,35 – 12,45	10,3 – 11,45	12,2 – 13,35	
	3,0	0,8 - 7,4	3,0 - 9,6	0,8 - 8,2	3,0 - 10,4	
2,5; 2,5x2; 2,5x3	3,5	7,4 - 8,4	9,6 – 10,6	8,2-9,2	10,4 — 11,4	
	4,0	<i>8,4</i> – <i>9,3</i>	10,6 – 11,5	9,2 – 10,15	11,4 – 12,35	
	3,0	0,8 - 6,75	3,3 - 9,25	0,8 - 7,55	3,3 - 10,05	
2,8; 2,8x2; 2,8x3	3,5	6,75 – 7,60	9,25 – 10,1	7,55 — 8,4	10,05 – 10,9	
	4,0	7,60 — 8,40	10,1 – 10,9	8,4 - 9,25	10,9 – 11,75	
	3,0	0.8 - 6.45	3,5 – 9,15	0.8 - 7.2	3,5 – 9,9	
3,0; 3,0x2; 3,0x3	3,5	6,45 - 7,20	9,15 — 9,9	7,2 - 8,0	9,9 — 10,7	
	4,0	7,20 – 7,95	9,9 – 10,65	8,0 - 8,8	10,7 – 11,5	

Таблица 11 Устройство насыпи/засыпки земляного полотна для 4 х и более полосной а/д

	Трубы с профилем 150х50 под автомобильную дорогу					
Отверстие	Толщина	Мо	дуль деформаци	и грунта засы	пки	
трубы, м	металл	Не мене	е 18 МПа	Не мене	е 30 МПа	
ттруоы, м	а, мм	Высота	Высота	Высота	Высота	
	a, iviivi	засыпки, м	насыпи, м	засыпки, м	насыпи, м	
	2,5	0,8 - 16,55	1,5 – 17,25	0,8 - 17,6	1,5 – 18,3	
1,0; 1,0x2;	3,0	16,55 – 19,95	17,25 – 20,65	17, 216 –,15	18,3 – 21,85	
1,0x3	3,5	19,95 – 23,2	20,65 - 23,9	21,15 – 24,5	21,85 – 25,2	
	4,0	23,2-26,4	23,9 - 27,1	24,5 - 27,9	25,2 - 28,6	
	2,5	0,8 - 13,1	1,7 – 14,0	0,8 - 14,0	1,7 – 14,9	
1,2; 1,2x2;	3,0	13,1 – 15,75	14,0 - 16,65	14,0 – 16,8	14,9 – 17,7	
1,2x3	3,5	15,75 – 18,25	16,65 – 19,15	16,8 – 19,5	17,7 – 20,4	
	4,0	18,25 – 20,75	19,15 – 21,65	19,5 – 22,1	20,4 - 23,0	
	2,5	0,8 - 10,0	2,0 - 11,2	0,8 - 10,85	2,0 - 12,05	
1,5; 1,5x2;	3,0	10,0 – 11,9	11,2 – 13,1	10,85 – 12,85	12,05 – 14,05	
1,5x3	3,5	11,9 – 13,8	13,1 – 15,0	12,85 – 14,85	14,05 – 16,05	
	4,0	13,8 – 15,6	<i>15,0</i> – <i>16,8</i>	14,85 – 16,8	16,05 – 18,0	
	2,5	0,8 - 8,2	2,3 - 9,7	0,8 - 8,95	2,3 - 10,45	
1,8; 1,8x2;	3,0	8,2-9,65	9,7 – 11,15	8,95 – 10,55	10,45 – 12,05	
1,8x3	3,5	9,65 – 11,1	11,15 – 12,6	10,55 – 12,1	12,05 – 13,6	
	4,0	11,1 – 12,55	12,6 - 14,05	12,1 – 13,6	13,6 – 15,1	
	2,5	0.8 - 7.4	2,5-9,1	0,8 - 8,1	2,5 - 9,8	
2,0; 2,0x2;	3,0	7,4 — 8,65	9,1 – 10,35	8,1 - 9,5	9,8 – 11,2	
2,0x3	3,5	8,65 - 9,9	10,35 – 11,6	9,5 – 10,8	11,2 – 12,5	
	4,0	9,9 – 11,1	11,6 – 12,8	10,8 – 12,15	12,5 – 13,185	
2 2 2 2 2 2 2	3,0	0.8 - 7.9	2,8 - 9,8	0.8 - 8.65	2,7 - 10,55	
2,2; 2,2x2;	3,5	7,9 - 9,0	9,8 - 10,9	8,65 – 9,85	10,55 – 11,75	
2,2x3	4,0	9,0 - 10,05	10,9 - 11,95	9,85 – 11,05	11,75 – 12,95	
0 F: 0 Ev0:	3,0	0,8 - 7,05	3,0 - 9,25	0,8 - 7,8	3,0 - 10,0	
2,5; 2,5x2;	3,5	7,05 – 7,95	9,25 - 10,15	7,8 – 8,8	10,0 - 11,0	
2,5x3	4,0	7,95 – 8,9	10,15 – 11,1	8,8-9,8	11,0 – 12,0	
2 0. 2 0.2.	3,0	0,8 - 6,45	3,3 - 8,95	0,8 - 7,2	3,3 - 9,7	
2,8; 2,8x2;	3,5	6,45 - 7,25	8,95 - 9,75	7,2 - 8,1	9,7 – 10,6	
2,8x3	4,0	7,25 - 8,05	9,75 – 10,55	8,1 - 8,95	10,6 - 11,45	
2.0.2.0.2.	3,0	0,8 - 6,15	3,5 - 8,85	0,8 - 6,9	3,5 - 9,6	
3,0; 3,0x2;	3,5	6,15 – 6,9	8,85 – 9,6	6,9 – 7,7	9,6 – 10,4	
3,0x3	4,0	6,9 - 7,6	9,6 – 10,3	7,7 – 8,5	10,4 – 11,2	

Примечания к таблицам 8, 9, 10, 11:

- 1. Высота насыпи определена по оси насыпи с учетом ограничения длины трубы, как правило, до 20 м в соответствии с п.5.13 СП 35.13330.2011;
- 2. При значении высоты засыпки над конструкцией более указанного в таблицах 88, 99, 10, 11. необходимо разрабатывать индивидуальный проект;
 - 3. Минимальная высота засыпки назначается из условий пп.4.1.
- 4. Выбор толщины листа СВМГТ производится с учетом факторов, воздействующих на работу конструкции;
- 5. Высота насыпи для труб с гофрированным профилем 114х25 мм принимается по аналогии высот для труб с гофрированным профилем 125х26 мм;
- 6. Трубы из металла толщиной 2,0 мм не применяются на автомобильных дорогах общего пользования;

						3.50
3М	Кол.	Лист	№ док	Подпись	Дата	

- 7. При косом пересечении более 83° максимально допустимые показатели высот засыпки и насыпи необходимо уменьшить на 20%;
- 8. Расчет выполнен для СВМГТ из стали марки S275 EN 10025 с пределом текучести не менее 275 МПа и временным сопротивлением разрыву не менее 330МПа. При использовании стали марки S280 приведенные высоты насыпи/засыпки можно увеличить на 0,3 м.
- 4.11 Строительный подъем назначается по дуге окружности и рассчитывается по формулам:

$$y_i = -y_0 \pm \sqrt{y_0^2 + 2x_i x_0 - x_i^2};$$

$$x_0 = \frac{L}{2} + \frac{i}{2\Delta} (L - L_{\rm H}) L_{\rm H}; y_0 = \frac{(L - L_{\rm H}) L_{\rm H}}{2\Delta},$$

еде y_i - превышение рассматриваемой точки лотка сооружения над лотком выходного сечения, м;

 x_i - расстояние от выходного до рассматриваемого сечения сооружения, м;

L - длина сооружения, м;

 $L_{\rm H}$ - расстояние от выходного сечения до оси земляного полотна, м;

і - уклон лотка сооружения;

∆- строительный подъем по п. 5.8 (1/80H, 1/50H или 1/40H),

Н - высота насыпи, м.

- 4.12 Строительный подъем назначают, исходя из расчетной осадки под осью насыпи, с учетом уклона и длины трубы, а также характеристик грунтов основания:
 - при песчаных, галечниковых и гравелистых грунтах основания 1/80H;
 - при глинистых, суглинистых и супесчаных грунтах 1/50H;
- при грунтовых подушках из щебеночно-песчаной, песчано-гравелистой смеси
 1/40H.
- строительный подъем не устраивают для труб, сооружаемых на скальных и других несжимаемых грунтах.
- 4.13 Расчет осадок основания производится в соответствии с методикой, изложенной в ОДМ 218.2.001-2009.
- 4.14 При наличии в основании сжимаемого слоя грунта величина строительного подъема находится из формулы:

$$\Delta = KS_p - 0.25i L$$

где К - коэффициент запаса, учитывающий вид грунтов основания;

К=1 - для талых грунтов основания;

К=1,25 - при наличии В основании Вечномерзлых грунтов.

 S_p - расчетная осадка основания (см. п. 5.8) определяется по формуле:

$$S_p = S_2 - \frac{S_1 + S_3}{2}$$

еде S_1 и S_3 - осадки входного и выходного оголовков, м;

 S_2 - осадка в средней части трубы, м.

Отметки лотка трубы назначаются с учетом строительного подъема. Для обеспечения расчетного строительного подъема в рабочих чертежах должны быть указаны отметки по оси земляного полотна, в четвертях по длине трубы и на входе и выходе из трубы. При длине СВМГТ более 60 метров шаг рассчитываемых отметок назначается через 15 метров.

В случаях больших осадок основания (прогибах) и малых продольных уклонах лотка трубы при назначении строительного подъема разрешается допускать превышение уровня лотка в середине трубы над уровнем лотка у входного оголовка в пределах 50% от расчетной осадки основания по оси земляного полотна, но не более 20 см. При этом величина ординаты строительного подъема трубы по оси земляного полотна должна быть не менее величины расчетной осадки основания.

В случае невозможности выполнения указанных выше условий необходимо усиление основания либо замена грунта. Если расчетные осадки будут больше допустимых, применение CBMГТ не рекомендуется.

4.15 В пределах очертания, приведенного на соответствующих документах, засыпка труб производится строительным подразделением, сооружающим трубу. Коэффициент уплотнения грунтов засыпки должен быть не менее 0,95 или 0,98 от максимальной стандартной плотности для грунтов с модулем деформации Егр=18 МПа или Егр=30 МПа соответственно.

При этом должны соблюдаться требования СП 35.13330.2011 по устройству земляного полотна автомобильных дорог.

- 4.16 Номенклатура грунтов, пригодных для укладки в засыпку, приведена в пп. 6.10, 6.10., 6.11. При возведении засыпки должна соблюдаться технология, приведенная в ОДМ 218.2.001-2009.
- 4.17 В рабочих чертежах должен быть указан материал грунтов для засыпки труб, максимальная стандартная плотность, оптимальная влажность и компрессионный модуль деформации этих грунтов, коэффициент уплотнения призмы засыпки вокруг трубы.

Изм	Кол.	Лист	№ док	Подпись	Дата

5. КОНСТРУКЦИЯ ОГОЛОВОЧНОЙ ЧАСТИ ТРУБЫ

- 5.1 В настоящей серии разработано несколько типов устройства оголовочной части трубы:
- тип 1 секции с выступающим из тела насыпи вертикально срезанным торцом с железобетонными противофильтрационными блоками для труб с профилем 68х13 мм отверстиями 0,5; 0,8 м; с профилем 125х26, 114х25 мм отверстиями 1,0; 1,2; 1,5 м и при соответствующем обосновании в проектной документации 1,8; 2,0; 2,2; 2,5; 2,8 и 3,0 м; с профилем 150х50 мм отверстиями 2,0 м и при соответствующем обосновании в проектной документации 2,2; 2,5; 2,8 и 3,0 м;
- тип 1a то же, с применением противофильтрационной цементногрунтовой перемычкой;
- тип 2 секции с выступающим из тела насыпи торцом, срезанным по откосу насыпи с железобетонными противофильтрационными блоками для труб с профилем 125x26, 114x25 мм отверстиями 1,5; 1,8; 2,0; 2,2; 2,5; 2,8 и 3,0 м; с профилем 150x50 мм отверстиями 2,0; 2,2; 2,5; 2,8 и 3,0 м;
- тип 2a то же, с применением противофильтрационной цементногрунтовой перемычкой.
- 5.2 У спиральновитых металлических гофрированных труб, сооружаемых на непучинистых грунтах основания (гравелистых, песчаных, крупнообломочных грунтах и т.п.), для предотвращения фильтрации воды под трубу, как правило, предусматривается устройство противофильтрационной перемычки из сборного или монолитного бетона (п. 6.6)

Перемычка состоит из лекального блока, устанавливаемого на гравийнопесчаную подушку, и противофильтрационного экрана, который устанавливается перед торцом трубы.

Толщина гравийно-песчаной подушки и глубина заложения противофильтрационного экрана в непучинистых грунтах назначаются из конструктивных соображений независимо от расчетной глубины промерзания.

В оголовочной части СВМГТ, сооружаемых на пучинистых грунтах основания (суглинистых, глинистых, супесчаных и т.п.), толщина гравийно-песчаной подушки и глубина заложения противофильтрационного экрана назначаются на 0,25 м больше расчетной глубины промерзания грунтов основания в районе строительства.

5.3 В оголовочной части СВМГТ, сооружаемых на пучинистых грунтах основания, как правило. предусматривается устройство противофильтрационных перемычек из цементо-грунтовой смеси (оголовочные части типа 1a и 2a). Длина перемычки вдоль оси трубы должна быть не менее 3,0 м поверху, а толщина не менее 0,7 метров от расчетной глубины промерзания и не менее толщины подушки под средней частью трубы.

Для спиральновитых металлических гофрированных труб северного исполнения толщина перемычки должна быть не более 2,0 м.

Состав цементо-грунтовой смеси принимается в соответствии с п. 6.12, а технология ее выполнения должна соответствовать требованиям, изложенным в ОДМ 218.2.001-2009.

- 5.4 Предоставленные объемы земляных работ и необходимых материалов для гофрированного профиля 114х25 мм принимаются по аналогии для гофрированного профиля 125х26 мм.
- 5.5 При сооружении СВМГТ на косогорах с уклоном более 0,030 трубы должны устраиваться в теле насыпи на подсыпке из скального грунта или камня. Конструкция подсыпки должна обеспечивать укладку трубы с уклоном не более 0,050.

Разработку конструкции входного оголовка труб в горной местности и расчеты их гидравлических характеристик следует производить по «Пособию по гидравлическим расчетам малых водопропускных сооружений» (Москва, Транспорт, 1992).

При отсутствии специальных сооружений на входе в трубу (водоприемных колодцев, бетонных лотков, колодцев, быстротоков, скальных отсыпок и других гасителей и т.п.) гидравлические характеристики труб на косогорах принимаются как для труб в равнинных условиях.

5.6 При расположении труб в теле насыпи на каменной (из скального грунта) подсыпке выпуск воды осуществляется на берму подсыпки, размеры которой определяются гидравлическим расчетом.

Размеры берм вдоль потока и поперек него определяются по расчетному расходу для автомобильных дорог.

Изм	Кол.	Лист	№ док	Подпись	Дата

Размеры поперечного сечения противофильтрационной перемычки назначаются таким образом, чтобы полностью перекрыть поперечное сечение каменной (скальной) подсыпки и подушки из гравийно-песчаной смеси.

5.7 При грунтах основания, допускающих значительные неразмывающие скорости (скальные, полускальные, глыбовые и т.п. грунты), подсыпка на всю высоту устраивается из горной массы.

Для оснований, сложенных из легко размываемых грунтов, нижняя часть подсыпки отсыпается по принципу обратного фильтра с расположением мелких фракций непосредственно на поверхности естественного грунта.

В том и другом случаях противофильтрационный экран устраивается непосредственно на поверхности естественного грунта дна котлована.

- 5.8 Ширина каменной подсыпки под трубой принимается равной диаметру трубы плюс 2,0 м в каждую сторону от наружной грани трубы.
 - 5.9 Откосы бермы назначаются, как правило, не круче 1:2.

Конструкция заделки подошвы бермы в грунт лога должна исключать возможность подмыва бермы.

- 5.10 Конструкции основания каменной подсыпки и бермы принимаются аналогично конструкции основания прилегающих участков насыпи.
- 5.11 При устройстве врезки перед входом в трубу должна быть образована площадка с уклоном не более 0,020 в сторону трубы. Размер площадки в плане принимается равным: поперек оси трубы диаметру трубы, вдоль не менее 2,0 м.

Откосы и дно врезки должны быть укреплены.

Располагать врезку в пределах вечномерзлых грунтов, имеющих при оттаивании (в талом состоянии) мягкопластичную или текучую консистенцию, не допускается.

5.12 При расположении трубы на "полке" допускается выпуск водотока на откос косогора. При этом за выходным оголовком должна быть предусмотрена берма, размер которой вдоль и поперек потока определяется расчетом (см. п. 5.6, 5.5). Выпуск водотока на откос косогора не допускается, если косогор сложен легко размываемыми грунтами.

В этом случае необходимо на выходе из трубы отсыпать берму из крупного камня или создать ее за счет понижения отметки выхода, предусмотрев соответствующее укрепление.

5.13 На входе и выходе из трубы должно предусматриваться устройство укрепления откосов насыпи, входного и выходного русла.

Укрепление следует предусматривать в зависимости от выбранного материала укрепления следующих типов:

- 1) Габионный: матрасно-тюфячный материал;
- 2) Железобетонный: монолитный и сборный железобетон;
- 3)Комбинированный: монолитный или сборный железобетон и матраснотюфячный материал;
 - 4) Каменная наброска.

При устройстве водопропускных труб диаметром до 1,5 м в качестве укрепления откосов насыпи, входного и выходного русел, как правило, используются габионный и железобетонный типы укрепления.

При устройстве труб диаметром от 1,5 до 2,5 м включительно, возможно использование четырех типов укрепления с устройством оголовков и без них.

При устройстве труб диаметром более 2,5 до 3,0 м рекомендуется использование четырех типов укрепления с устройством оголовков.

Использование каждого типа укрепления зависит от:

- гидравлических характеристик естественных водоемов и каналов;
- вида грунта, залегающего в русле;
- диаметра водопропускного сооружения.

При устройстве СВМГТ на слабых грунтах рекомендуется использовать в качестве укрепления входного и выходного русел габионный тип укрепления.

При устройстве спиральновитых металлических гофрированных труб на косогорах, как правило, в качестве укрепления применяется каменная наброска.

- 5.14 Типы укрепления откосов и русла на входной и выходной части:
- 5.14.1 Габионный тип укрепления требуется устраивать на пучинистых арунтах основания (суглинистых, глинистых, супесчаных и т.п.). При соответствующем технико-экономическом обосновании возможно устройство габионного типа на прочных грунтах.

Изм	Кол.	Лист	№ док	Подпись	Дата

Высота габионных конструкций в зависимости от скорости водного потока представлена в таблице 12 на основании ВСН-АПК 2.30.05.001-03.

Таблица 12

Тип габиона	Высота габиона, (м)	Средний размер камня, мм	Предельная скорость потока, (м/с)
	0.45.0.47	85	3,5
	0,15-0,17	110	4,2
Матрасно-	0,23-0,25	85	3,6
тюфячный		120	4,5
	0.20	100	4,2
	0,30	125	5,0
Коробчатый	0,5-1,0	150	5,8
		190	6,4

В габионных конструкциях должен использоваться грубо раздробленный природный или искусственный каменный материал, обладающий необходимой прочностью, морозостойкостью и водостойкостью, получаемый дроблением изверженных, осадочных и метаморфических пород.

По функциональному назначению габионы, в зависимости от их расположения и условий эксплуатации в сооружении, подразделяются на:

- надводные (H);
- переменного уровня воды (Пу);
- подводные (Пд).

Обычно для типа H назначаются матрасно-тюфячные габионы до 0,30 м, для типа $\Pi y = 0,30$ м, для типа $\Pi B = 0,30$ м.

Защита конструкций от воздействия фильтрационного потока обеспечивается укладкой геосинтетического материала (в качестве основания под конструкцию) плотностью не менее 250 гр/м², исключающего суффозионные процессы в конструкциях.

5.14.2 Укрепление монолитным бетоном и сборным железобетонными конструкциями могут применяться на постоянных и периодически действующих водотоках.

Данный тип укрепления рекомендуется применять на непучинистых грунтах основания (гравелистых, песчаных, крупнообломочных и т.п.). Укрепление русел, сложенных слабыми грунтами (торф, илы и т.д.), должно производиться по индивидуальным проектам.

В качестве основания под укрепление монолитным бетоном предусматривается слой щебня толщиной 8 см на входном оголовке, 12 см на выходном оголовке. Толщина щебня под укрепление сборным бетоном — 10 см на входном и выходном оголовках.

Гидравлические характеристики водотоков для разных типов укрепления представлены в таблице 13.

Таблица 13

Тип укреплен	ния	V max, м/сек	$Hmax * (\frac{k_c V_{max}}{m\sqrt{2q}})^2$	Удельный расход, м³/сек
Каменная набр	оска	2,50	0,64	0,74
Монолитный желе	Монолитный железобетон		4,31	12,9
Сборный железобетон (плиты 49х49 см)		3,00	0,92	1,27
Габионный (гибкие	б =7,5 см.	2,75	0,77	0,97
плитные покрытия)	б =15,0 см.	4,00	1,63	3,00

- * V допускаемая скорость течения воды для данного типа укрепления; H подпор, м.
- 5.14.3 Устройство комбинированного типа: монолитный или сборный железобетон и матрасно-тюфячный материал, как правило, применяется в следующих возможных вариантах:
- на слабых грунтах для предотвращения подмыва и водонасыщения насыпи земляного полотна используется монолитный бетон или сборные железобетонные конструкции, для укрепления русла – матрасно-тюфячные конструкции;
- при высоких насыпях 6-12 м откосы на высоту отметки расчетного (максимального) уровня превышения воды 1% + 0,5 м — укрепляются монолитным бетоном или железобетонными конструкциями, выше расчетной отметки габионными конструкциями.
- 5.14.4 Укрепление из каменной наброски может применятся на постоянных и периодически действующих водотоках. Гидравлические характеристики водотоков для данного типа укрепления каменной наброской, представлены в таблице 13.

В качестве основания под укрепление каменной наброской предусматривается слой щебня толщиной 10 см.

Укрепление каменной наброской производят из каменного материала, полученного из карьера без предварительной сортировки. Размер самой крупной фракции должен быть не более 40 см, количество фракций размером менее 5 мм должно составлять не более 20%.

Изм	Кол.	Лист	№ док	Подпись	Дата

Гранулометрический состав каменной наброски, принятый в типовой документации, представлен в таблице 14.

Таблица 14

Крупность камня, см	% содержания по массе
40-20	≥20
20-5	60
Менее 5	≤20
Средняя в наброске 14,5 см	

Толщина укрепления каменной наброской из несортированного камня на откосах насыпи и в подводящем русле принимается не менее 40 см, в отводящем русле по расчету в рамках индивидуального проектирования.

6. МАТЕРИАЛЫ ДЛЯ ИЗГОТОВЛЕНИЯ СВМГТ

Элементы трубы (секции, бандажные соединения) изготавливаются из стали S275 (S280) с классом прочности выше C265 по ГОСТ 19281. В условиях отсутствия отечественного производителя стали с требуемыми параметрами защитного покрытия, используются иностранные марки стали с классом прочности C265 и выше ГОСТ 19281-2014 следующих марок:

- S275 по ГОСТ 19281, EN 10025, с физико-химическими характеристиками (предел текучести не менее 275 МПа, предел прочности не менее 330 МПа);
- S280 по ГОСТ 52246, EN 10346, с физико-химическими характеристиками (предел текучести не менее 280 МПа, предел прочности не менее 360 МПа);
- 6.1 Болты и гайки для соединительных бандажей принимаются по DIN965, DIN933 и DIN934. Допускается по согласованию с проектной организацией применение крепежных деталей других видов.
- 6.2~Для устройства основного антикоррозионного покрытия элементов гофрированных труб и крепежных деталей применяется цинк марки ЦЗ по ГОСТ 3640-94~ класса $\Pi~$ (повышенный) по ГОСТ 14918-80.~ Масса основного антикоррозионного покрытия должна быть не менее 720~г на 1~ м $^2~$ слоя покрытия, нанесенного с двух сторон.
- 6.3 Второй основной защитный слой из полимерного покрытия (полиэтилен высокой плотности низкого давления HDPE) наносится только в заводских условиях горячим способом методом ламинирования. Толщина защитного полимерного слоя должна быть не менее 300 мкм с каждой стороны.

- 6.4 При нанесении дополнительного защитного покрытия на строительной площадке для труб с единственным цинковым покрытием, необходимо применение следующих материалов:
- для труб обычного исполнения: наполненные битумно-резиновые мастики заводского изготовления марок мБР-65 и мБР-90 по ГОСТ 15836-79 и битумно-минеральные (битуминоли) марок Н-1 и Н-2 по ОДМ 218.2.001-2009;
- для труб северного исполнения: применяют составы на основе полиуретановых смол, а также одноупаковочную мастику холодной сушки, наносимые в два-три слоя общей толщиной до 1,0 миллиметра;
- 6.5 По согласованию с автором типового альбома допускается применение других защитных покрытий по своим свойствам отвечающих требованиям, предъявляемым к покрытиям для спиральновитых металлических гофрированных труб.
- 6.6 Материал блоков фундаментов и противофильтрационных экранов бетон класса по прочности на сжатие В20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6.
- 6.7 Блоки лотка изготавливаются из мелкозернистого бетона, цементно-бетонной смеси с износостойким полимерным покрытием или асфальтобетоном.

Класс бетона по прочности на сжатие для блоков лотка назначается не ниже В20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатически, условий района строительства, водонепроницаемостью W6.

Состав полимербетона или асфальтобетона должен соответствовать требованиям ГОСТ 9128-2013.

Для приготовления асфальтобетонной смеси защитного лотка следует применять битумы нефтяные дорожные вязкие марок БНД 40/60; БНД 60/90 и БНД 90/130 или БН 60/90 и БН 90/130 по ГОСТ 22245-90, пески, отвечающие требованиям ГОСТ 8736-93, Минеральные порошки активированные или неактивированные из карбонатных горных пород, удовлетворяющие требованиям ГОСТ Р 52129-2003.

Лотки из асфальтобетона применяются на трубах только с цинковым защитным покрытием.

Изм	Кол.	Лист	№ док	Подпись	Дата

- 6.8 Для устройства подушки под трубу следует применять грунты оптимального состава (п.4.1), т.е. пески средней крупности, крупные, гравелистые, щебенисто-галечниковые и дресвяно-гравийные грунты, не содержащие обломков размером более 50 мм. Перечисленные грунты не должны содержать более 10% частиц размером менее 0,1 мм, в том числе более 2% глинистых размером менее 0,005 мм.
- 6.9 Для защиты от повреждения цинкового покрытия трубы при засыпке применяется нетканый геосинтетический материал (типа «Дорнит» с плотностью 500 г/м² по ТУ 8591-001-50099417-2001 или материалы аналоги), только для СВМГТ с единственным покрытием. Для труб с двойным защитным покрытием (п.3.2) применять нетканый геосинтетический материал для защиты от повреждения цинкового покрытия не требуется.
- 6.10 Для труб под насыпями автомобильных дорог грунтовая призма засыпки вокруг трубы отсыпается из оптимального дренирующего, тщательно уплотненного грунта (п. 4.1), а также из мелких песков с компрессионным модулем деформации (Егр) не менее 18 МПа (30 МПа). Все эти грунты не должны содержать более 10% частиц размером менее 0,1 мм, в том числе не более 2% глинистых размером менее 0,005 мм.
- 6.11 Для труб под насыпями автомобильных дорог, в районах, где исключается возможность пучинообразования, по согласованию с заказчиком, допускается отсыпка грунтовой призмы из глинистых грунтов, пригодных для возведения насыпей модуль деформации (см. п.8.7) этих грунтов должен быть не менее 18 МПа.
- 6.12 Для устройства цементно-грунтовой перемычки в оголовочной части СВМГТ следует применять супеси, суглинки и глины, а в качестве вяжущего портландцемент. Расход цемента принимают равным 15-25% массы сухой смеси в зависимости от типа и состояния грунтов. марка по прочности М20, М40, М60 в зависимости от типа дорожной одежды.
- 6.13 При устройстве укрепления русла и откосов на входе и выходе из трубы в зависимости от типа укрепления применяются различные синтетические материалы (тканый и нетканый геосинтетический материал, геомембрана, геосетка, георешетка) (см. раздел 5).
- 6.14 Для ремонта поврежденных, при транспортировке и монтаже, участков защитного покрытия необходимо использовать:

- при наличии повреждений цинкового покрытия CBMГТ обработать места повреждения специальными материалами (цинк марки Zinga сертификат соответствия 0764414, цинконаполненной краской Цинол или аналогичным материалом), Цинк наносится в три слоя с полным высыханием.
- при наличии повреждений полимерного покрытия СВМГТ обработать места повреждения жидким цинком Zinga, затем закрыть место битумным лаком (Bitumast ТУ 5775-016-5212471-2002 или материалы аналоги), в три слоя с полным высыханием).

7. ГИДРАВЛИЧЕСКИЕ РАСЧЕТЫ

- 7.1 Гидравлические расчеты спиральновитых металлических гофрированных труб выполнены в соответствии с требованиями ОДМ 218.2.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорогах общего пользования с учетом региональных условий (дорожно-климатических зон)» и «Пособия по гидравлическим расчетам малых водопропускных сооружений» (Москва, Транспорт, 1992 г.)».
- 7.2 Возвышение высшей точки внутренней поверхности трубы в любом поперечном сечении над поверхностью воды при расчетном расходе и безнапорном режиме работы должно быть не менее ½ высоты трубы в СВМГТ диаметром до 3,0 м и не менее 0,75 м при диаметре более 3,0 м.

СВМГТ используют при строительстве водопропускных сооружений, работающих в безнапорном режиме. Заполнение входного и выходного сечений спиральновитой металлической гофрированной трубы при расчетном расходе и безнапорном режиме должно быть не более 0,9 от высоты СВМГТ.

7.3 Конструктивные слои под бандажом.

Под бандажное соединение спиральновитой металлической гофрированной трубы необходимо укладывать нетканое геосинтетическое полотно (300 г/м2).

Дополнительные слои под бандажным соединением назначаются исходя из гидрологических особенностей водотоков:

- для малых расчетных (максимальных) расходов водотока, временных водотоках (перепусках), при наполнении спиральновитой металлической гофрированной трубы менее 0,5D в качестве конструктивного слоя под бандажное соединение предусматривается один слой из нетканого геосинтетического материала с плотностью 300 г/м2;

Изм	Кол.	Лист	№ док	Подпись	Дата

7.4 Для труб в районах северной строительно-климатической зоны с наименее суровыми условиями под автомобильные дороги общего пользования, при расчетном и наибольшем расходе воды принят безнапорный режим протекания воды. Наибольшая глубина потока во входном сечении трубы принята равной 0,75 от диаметра трубы.

7.5 Скорость воды в выходном сечении трубы не должна превышать 6 м/сек. Скорость воды для расчета укреплений принимается в 1,2 раза больше скорости в выходном сечении трубы. При определении скорости воды в выходном сечении трубы более 6 м/сек, материал и конструкция трубы назначаются в рамках индивидуального проекта.

7.6 При проектировании труб в теле насыпи на каменной (из скального грунта) подсыпке гидравлические характеристики трубы определяются как для труб, расположенных в равнинных условиях с учетом конструкции входного оголовка. Скорость потока на берме и ее откосах принимается в 1,3 раза больше скорости потока в выходном сечении трубы.

При определении скорости течения воды в выходном сечении трубы более 6 $\rm m^3/c$ материал и конструкция укрепления назначается по индивидуальному проекту.

7.7 Размеры бермы вдоль и поперек оси трубы определяются в зависимости от величины пропускаемого через сооружение расхода и скорости потока в выходном сечении трубы в соответствии с методикой расчета, приведенной в ОДМ 218.2.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорогах общего пользования с учетом региональных условий (дорожно-климатических зон)» и в «Пособии по гидравлическим расчетам малых Водопропускных сооружений». Величина размыва у подошвы бермы определена при пропуске расчетного расхода для грунтов лога с расчетной крупностью частиц, равной 0,1 мм.

7.8 При наличии иных грунтов лога и иной величины расхода, конструкция сопряжения откоса бермы с поверхностью лога должна быть запроектирована индивидуально в соответствии с ОДМ 218.2.001-2009.

7.9 Длина укрепления лога у подошвы откоса бермы (вдоль потока) назначается по конструктивным соображениям. Глубина и количество камня в рисберме определяются расчетом.

8. СТАТИЧЕСКИЕ РАСЧЕТЫ

- 8.1 Статические расчеты труб выполнены с учетом требований СП 35.13330.2011 Мосты и трубы. Актуализированная редакция СНиП 2.05.03-84*, в соответствии с методикой, приведенной в ОДМ 218.2.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорогах общего пользования с учетом региональных условий (дорожно-климатических зон)».
- 8.2 При проектировании водопропускных сооружений с применением CBMГТ следует выполнять четыре группы расчетов:
 - расчеты сооружения по предельным состояниям первой и второй группы;
 - -технологические расчеты;
 - гидравлические расчеты;
 - экономические расчеты.
- 8.3 Нормативное давление на секции труб от временной нагрузки Н14 определено для высоты засыпки 1,0 м и более, при величине линейной нагрузки Ψ , равной 233 кН/м, при длине участка распределения a_0 , равного 3,0 м.
- 8.4 В случаях, когда высота засыпки менее 1,0 м при нагрузках Н14 величину давления на рассматриваемую секцию трубы следует определять с учетом распределения давления в грунте под углом к вертикали arctg ½.
- 8.5 Расчет конструкций производится по предельному статическому равновесию. Расчеты высоты насыпи и высоты засыпки над СВМГТ выполнены для сталей марки S275 (предел текучести не менее 275 МПа, временное сопротивление разрыву не менее 330 МПа), S280 (предел текучести не менее 280 МПа, временное сопротивление разрыву не менее 360 МПа).
- 8.6 Предельные расчетные деформации поперечного сечения трубы (предельное относительное изменение горизонтального или вертикального диаметра) не должны превышать 1,5%.
 - 8.7 Расчеты конструкций труб выполнены для следующих случаев:

Изм	Кол.	Лист	№ док	Подпись	Дата

- а) при засыпке (в пределах очертания, приведенного на чертежах конструкций средней части трубы) грунтами, имеющими компрессионный модуль деформации (Егр), не ниже 18 МПа (принимаемый на основе компрессионных испытаний в одометре при интервале давлений 0,05-0,1 МПа), что соответствует коэффициенту уплотнения 0,95;
- б) при засыпке грунтами, имеющими компрессионный модуль деформации (Егр) не ниже 30 МПа, что соответствует коэффициенту уплотнения 0,98.
- 8.8 Расчет труб выполнен с учетом сейсмического воздействия для районов с расчетной сейсмичностью до 8 баллов включительно. При строительстве труб в районах с расчетной сейсмичностью более 8 баллов каждое сооружение необходимо рассчитывать индивидуально, с учетом местных условий строительства и эксплуатации.
 - 8.9 Результаты расчета представлены в таблицах 8, 9, 10,11.
 - 9. РАСЧЕТ ТРУБ НА СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ
- 9.1 Расчет на сейсмические воздействия выполнен в соответствии с требованиями СП 14.13330.2014 «Строительство в сейсмических районах СНиП II-7-81* (актуализированного СНиП II-7-81* «Строительство в сейсмических районах» (СП 14.13330.2011))», с учетом положений, изложенных в «Технических условиях по применению металлических гофрированных конструкций».
- 9.2 Расчет произведен для конструкций, расположенных в районах с расчетной сейсмичностью 8 баллов при разном количестве полос движения автотранспорта. Область применения труб, расположенных в районах с расчетной сейсмичностью 8 баллов таблицах 8, 9, 10, 11.
- 9.3 Конструкции, сооружаемые в районах с расчетной сейсмичностью 8 баллов, необходимо проектировать индивидуально с учетом местных условий строительства и эксплуатации, обращая особое внимание на выбор крутизны откосов насыпи, устройство оголовков и т.п.

10. ПРОИЗВОДСТВО РАБОТ

- 10.1 Строительство СВМГТ должно выполняться специализированными подразделениями по технологическим регламентам, составленным на основе требований настоящей документации, СП 46.13330.2012 «Мосты и трубы. Актуализированная редакция СНиП 3.06.04-91» и ОДМ 218.2.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорог общего пользования с учетом региональных условий (дорожно-климатических зон (№252-р от 21.07.2009 г. Росавтодор)».
- 10.2 Непосредственно перед укладкой трубы должна быть проведена проверка состояния цинкового либо полимерного покрытия трубы с оформлением результатов актом. Конструкции трубы с повреждениями, недостаточной толщиной или дефектами покрытия должны быть отбракованы, если дефекты нельзя устранить. Установка в сооружение отбракованных конструкций запрещается.
- 10.3 Усилие (момент) затяжки болтов бандажного крепления определяется по пределу текучести. Максимальная крутящая затяжка соединения, для болтов М12 класса прочности 8.8 равняется 10,0 кес м (98,1 Н м), класса прочности 10.9 12,5 кес м (122,6 Н м), согласно п.3 ОСТ 37.001.050-73 «Затяжка резьбовых соединений. Нормы затяжки».

Затягивать болты следует электрическими гайковертами или пневматическими гайковертами, а также торцевыми и накидными гаечными ключами. Допускается применение электрических гайковертов небольшой массы (2-3 кг), обеспечивающих величину затяжки 15,0 — 20,0 кгс м. При затяжке болтов необходимо следить за правильностью положения плосковыпуклых и плоских шайб.

10.4 Монтаж труб предусматривается из отдельных секций.

Для объединения секций используются бандажи.

Бандажное соединение выполняется из конструктивных элементов:

- слой геомембраны толщиной 1 мм (по необходимости см. п. 7.3);
- нетканый геосинтетический материал с плотностью 300 г/м²;
- металлическое бандажное крепление(уголки);
- крепежные элементы (болты, гайки, шайбы).

Изм	Кол.	Лист	№ док	Подпись	Дата	

Во избежание нарушения спрофилированной гравийно-песчаной подготовки, сборку трубы из секций рекомендуется производить на подмостях, по оси или несколько в стороне, с последующей накаткой на ось и опусканием трубы на ложе подготовки.

Монтаж секций трубы в проектное положение необходимо производить последовательно в соответствии с нанесенной заводской маркировкой (А-Б; Б-В; В-Д).

При возведении искусственного сооружения по этапам, монтаж крайних отрезков первого этапа монтируется с выполнением в месте стыковки конструктивных слоев геосинтетических материалов и устройством нижней части бандажного соединения. Устройство второго этапа выполняется последовательно, производится стыковка последующего отрезка, устройство слоев из геосинтетических материалов и устройство верхней части бандажа.

Устройство бандажного соединения выполняется с предельными отклонениями:

- допустимые отклонения расстояния между секциями СВМГТ равняются 5 –
 10 мм;
- допустимые отклонения расстояния между бандажными элементами ровняются 30 50 мм.
- 10.5 До установки трубы на гравийно-песчаную подушку смонтированная труба должна быть освидетельствована, а правильность сборки ее необходимо оформить актом на скрытые работы.
- 10.6 Строповка металлических конструкций труб в обхват должна производиться с использованием соответствующих строповочных устройств, не допускающих повреждения цинкового и дополнительного покрытий.
- 10.7 Перед началом засыпки труба с единичным основным цинковым защитным покрытием должна быть обернута нетканым геосинтетическим материалом с плотностью 500 г/м² для предотвращения повреждения наружного цинкового защитного покрытия трубы частицами грунта засыпки.
- 10.8 После укладки труб на гравийно-песчаную подушку производится засыпка трубы, с соблюдением требований, изложенных в ОДМ 218.2.001-2009.
- 10.9 После отсыпки земляного полотна до проектной отметки в трубах с единственным защитным покрытием (п. 3.4) укладывается сборный или монолитный защитный лоток, технология устройства которого принимается в соответствии с требованиями ОДМ 218.2.001-2009.

Устройство сборных лотков должно выполняться «от себя» так, чтобы подача блоков осуществлялась по уже защищенной поверхности. Заделка швов между блоками должна производиться вслед за укладкой блоков с тем, чтобы материалы заделки шва между блоками, а также между блоками и конструкцией трубы набирали прочность одновременно.

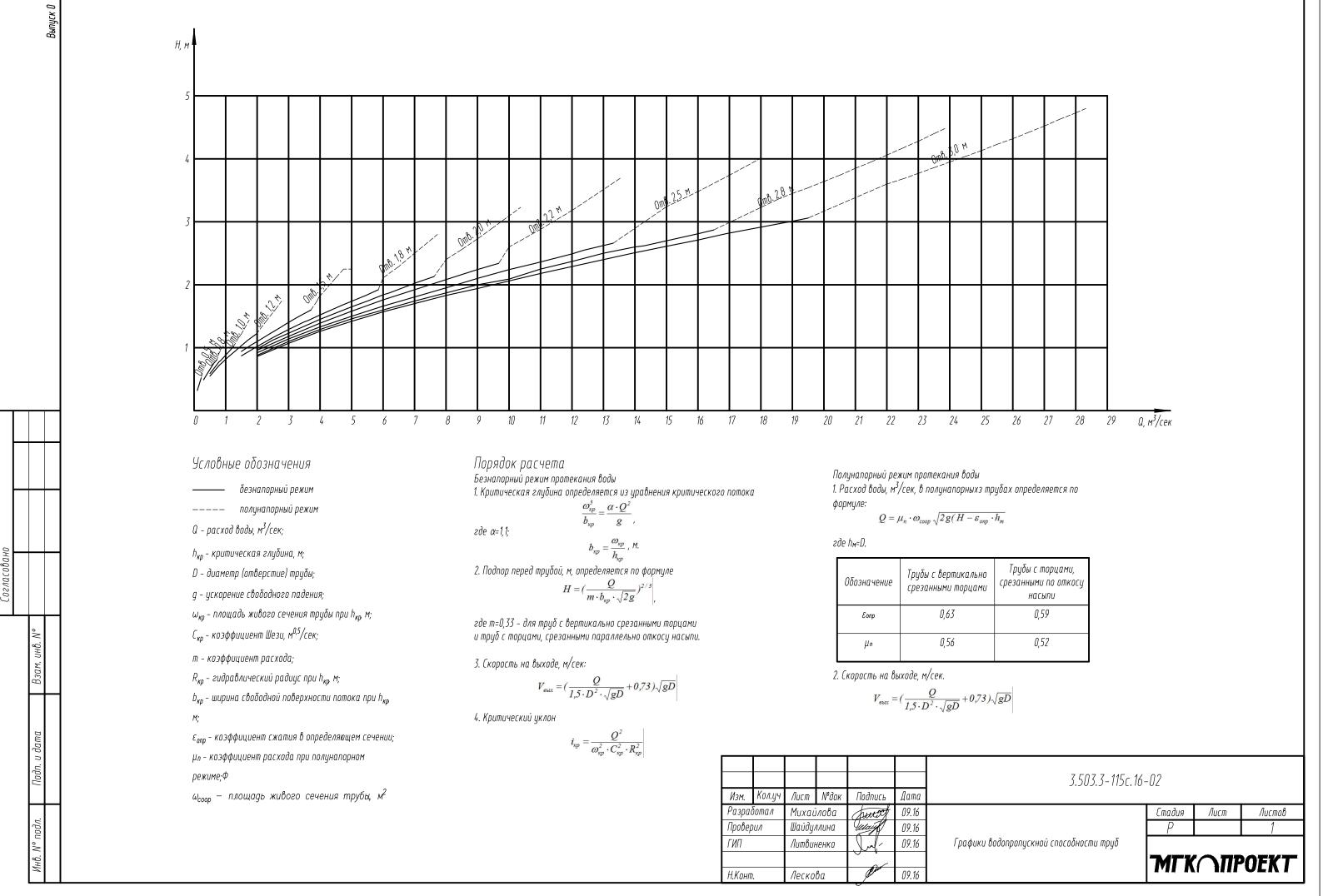
10.10 В том случае, когда необходимо организовать капитальный ремонт спиральновитых металлических гофрированных труб, не препятствуя движению транспорта на автомобильной дороге, используют метод гильзования. Данный метод капитального ремонта СВМГТ представлен в типовой технологической карте «Устройство, реконструкция и капитальный ремонт водопропускных труб методом гильзования», разработанный ООО «МГК Проект».

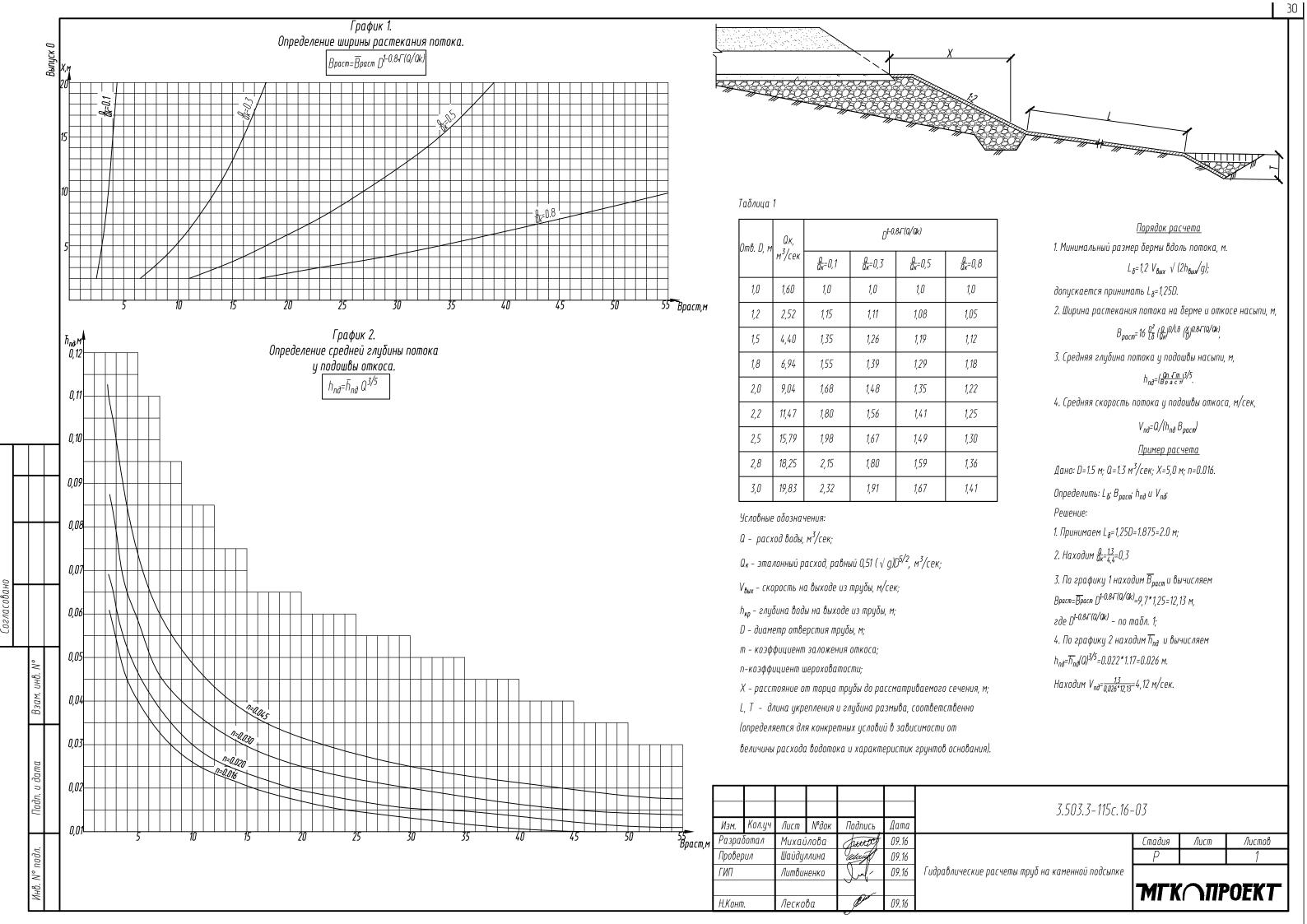
11. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

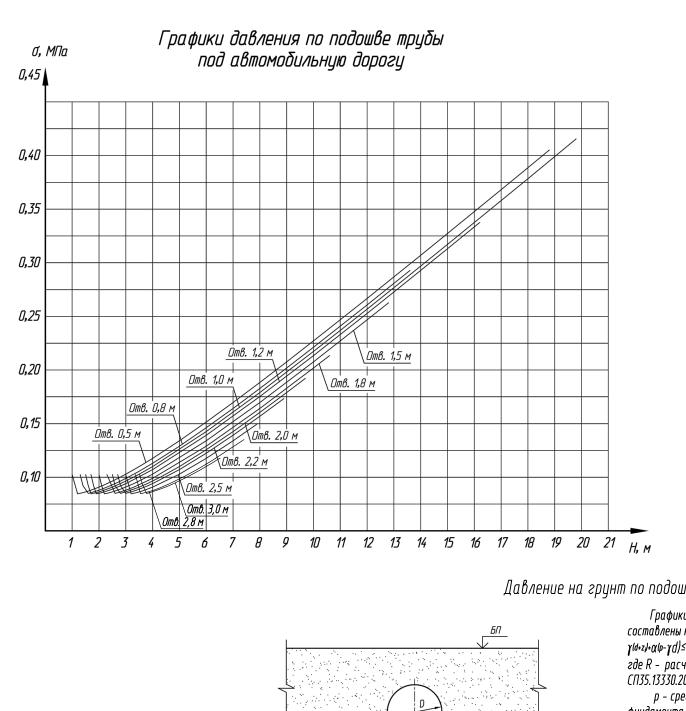
- 11.1 При производстве строительно-монтажных работ необходимо руководствоваться правилами техники безопасности, изложенными в СНиП 12-03-2001, СНИП 12-04-2002, СНиП 3.06.04-91 и ОДМ 218.2.001-2009.
- 11.2 Нанесение дополнительных антикоррозионных покрытий и устройство защитных лотков из асфальтобетона или полимербетона должны выполняться с соблюдением правил техники безопасности для закрытых помещений, изложенных в разделе «Изоляционные работы» СНиП 12-04-2002. Конструкция приточно-вытяжной вентиляции труб и их освещение разрабатываются в составе проекта производства работ на сооружение трубы с учетом конкретных условий строительства.
- 11.3 При составлении проекта производства работ по сооружению спиральновитых металлических гофрированных труб для конкретных условий строительства, на основании указанных в пп. 11.1 и 11.2 документов составляется рабочая инструкция по охране труда с учетом местных производственных условий и требований технологии сооружения труб, изложенных в настоящей документации и в ОДМ 218.2.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорог общего пользования с учетом региональных условий (дорожно-климатических зон(№252-р от 21.07.2009 г. Росавтодор)».

Изм	Кол.	Лист	№ док	Подпись	Дата

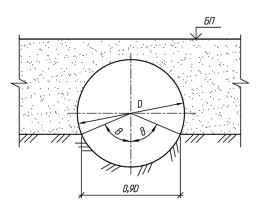
- 11.4 На стадии проектирования СВМГТ при проведении работ в русле необходимо выполнить расчет ущерба и произвести оценку воздействия на рыбноводный объект во время строительства. По результатам расчета ущерба определяется необходимость разработки программы производственно-экологического контроля (ПЭК). Программа ПЭК содержит комплекс мероприятий, способствующий восстановлению флоры и фауны на участке строительства после окончания работ. Описанные отчеты, как правило, готовит региональный отдел Государственного научно-исследовательского института озерного и речного рыбного хозяйства им Л. С. Берга (ГОСНИОРХ).
- 11.5 Контроль размера воздействия на рыбно-водный объект при работе в русле осуществляет региональный отдел Федерального агентства по рыболовству (Росрыболовство). Федеральный орган исполнительной власти согласовывает комплект проектной документации, в составе по Постановлению № 87 РФ от 16 февраля 2008 года, отчет оценки ущерба при производстве работ и отчет с описанием мероприятий ПЭК.


91	
×	
Взам. Инв. №	
Σ.	
Вза	
a	
аш	
b L	
9	
חחכ	
Подпись и дата	
_	
эдл.	
Ġ	

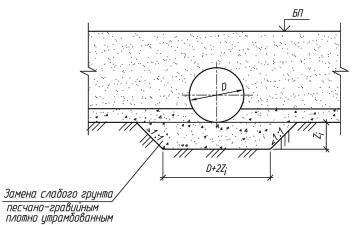

Изм	Кол.	Лист	№ док	Подпись	Дата


																			26
						Безн	апорный	режим					П	олуна	порныі	й режи	ИM		
	уск О		Вертика	альные сре	ээниге	Торици	грубы, среза	эниле по					Вертик	альные	Торцы	трубы,			
	19	Отв.	-	альные сре орцы трубі			груоы, среза ткосу насыі						среза		срезан				
		Трубы D, м		1 , 17			,	1	һкр	ітр	ікр	Vвых	торцы	трубы	откосу	насыпи	Vвых		
			Qp	Qmax	Н	Qp	Qmax	Н					Qmax	Н	Qmax	Н			
			QΡ	QIIIIX	11	QP	Villar	11					QIIIIA		Qmax	11			
			0,10	-	0,32	-	-	-	0,22	0,040	0,030	1,88	0,26	0,60	-	-	2,31		
		0,5	0,15	-	0,40	-	-	-	0,27	0,042	0,032	2,01	-	-		-	-		
	ŀ		0,30	0,22*	0,51 0,49	-	-	-	0,33	0,048 0,030	0,035	2,21 2,36	0,80	0,92	-	-	2,88	-	
			0,30	-	0,49	-	-	-	0,34	0,030	0,025	2,54	0,80	0,92	-	-	2,92		
		0,8	-	0,62	0,75	-	-	-	0,50	0,035	0,026	2,69	-	-	-	-	-		
	ļ		-	0,72*	0,81	-	-	-	0,53	0,036	0,029	2,79	-	-	-	-	-		
			0,50	-	0,59	-	-	-	0,42	0,026	0,021	2,62	1,40	1,15	-	-	3,22		
		1,0	0,80 0,83	-	0,78 0,79	-	-	-	0,53 0,54	0,027 0,028	0,021	2,82 2,84	1,50 1,75	1,22 1,44	-	-	3,29 3,45	1	
		1,0	-	1,09	0,79	-	-	-	0,63	0,028	0,022	3,01	1,73	-	-	-	-	1	
			-	1,25*	1,02	-	-	-	0,66	0,032	0,026	3,12	-	-	-	-	11=		
			0,50	-	0,55	-	-	-	0,40	0,024	0,019	2,74	2,30	1,43	-	-	3,57		
		-	0,80	-	0,72	-	-	-	0,51	0,024	0,020	2,88	2,60	1,62	-	-	3,71		
		1,2	1,10 1,31	-	0,86 0,95	-	-	-	0,59	0,024 0,025	0,020	3,01	2,78	1,74	-	-	3,79		
		1,2	-	1,40	0,99	-	-	-	0,67	0,025	0,021	3,15	-	-	-	-	-	1	
			-	1,71	1,12	-	-	-	0,75	0,027	0,022	3,30	-	-	-	-	-		
			-	1,98*	1,22	-	-	-	0,79	0,029	0,023	3,42	-	-	-	-	-		
		-	1,50	-	0,94	1,50	-	0,94	0,66	0,021	0,016	3,24	3,90	1,74	3,96	1,80	3,96		
		-	1,80 2,10	-	1,04	1,80	-	1,04	0,71	0,021	0,017 0,017	3,33	4,50	2,00	4,50 4,75	2,11	4,13 4,21	-	
\vdash			2,10	2,40	1,13 1,22	2,10 2,40	-	1,13 1,22	0,79	0,022 0,022	0,017	3,42 3,51	5,00	2,25	4,73	2,25	4,21		
		1.5	-	2,70	1,31	2,70	-	1,31	0,89	0,023	0,018	3,60	-	-	-	-	-		
Ш		1,5	-	2,99	1,40	3,00	-	1,41	0,94	0,024	0,019	3,70	-	-	-	=(-] 1. Гидравлические характеристики определены в соответствии с "Пособием по гидравлическим расчетам малых	
		-	-	3,30	1,49	-	3,30	1,49	0,97	0,025	0,019	3,78	-	-	-	-	-	по пориолические хириктеристики отречены в соотоетствии с пособием по гобраблическим расчетим малых водопропускных сооружений" Москва, "Транспорт", 1972 год	
		}	-	3,45*	1,53	-	3,45 3,60*	1,53 1,57	0,99 1,02	0,025 0,026	0,020	3,82 3,87	-	-	-	-	-	. Пропуск воды должен осуществляться с учетом расчетных паводков в безнапорном режиме, при обеспечении	
				-	-	-	3,71*	1,60	1,02	0,020	0,020	3,90	-	-	-	-	-	спиральновитых металлических гофрированных труб противофильтрационными экранами и фундаментами оголовков, а также при надежном укреплении русла против фильтрации воды	
			-	-	-	1,50	-	0,87	0,64	0,019	0,014	3,38	-	-	6,00	2,11	4,30	 Заполнение входного и выходного сечений спиральновитой металлической гофрированной трубы при расчетном расходе 	
			Ξ	-	Œ	2,00	-	1,02	0,73	0,019	0,015	3,48	-	=	6,50	2,29	4,41	и безнапорном режиме должно быть не более 0,9 от высоты СВМГТ 4. В графе Qmax для труб под автомобильную дорогу приведенные значения этих расходов принимаются как расчетные	
			-	-	-	2,50		1,16	0,82	0,019	0,015	3,58	-	-	7,00	2,49	4,51	. 5. Полунапорный режим представлен для анализа пропускной способности CBMFT и определения граничных условий при	
Н			-	-	-	3,00 3,50	-	1,29 1,41	0,88	0,019 0,020	0,015 0,015	3,68 3,79	-	-	7,73	2,80	4,66	назначении диаметра сечения трубы. 6. Условные обозначения приведены на докум 02	
]	<u>~</u>	1.0		-	-	3,61	-	1,43	0,98	0,020	0,015	3,81	-	_	_		_	de la companya de la	1
	. инб.	1,8	-	-	1-	-	4,00	1,52	1,04	0,020,	0,016	3,89	-	-	-	-	-		
	33aM		-	-	-	-	4,50	1,63	1,10	0,021	0,016	3,99	-	-	-	-		_	
F	+	}	-	-	-	-	4,72	1,68	1,13	0,022	0,016	4,72	-	-	-	-	-	-	
			-	-	-	-	5,00* 5,45*	1,74 1,83	1,16 1,19	0,022 0,023	0,017 0,018	4,10 4,19	-	-	-	-	-	1	
	שע		-	-	-	-	5,85*	1,92	1,25	0,024	0,018	4,27	-	-	-	-	-		
ſ	u dan	•				•					,		•					<u> </u>	╛
r) Jupi: 1																	7 507 7 145 - 1/ 01	
1																Изм. К	(ол нч Ли		
ŀ	+															Разрабоі		ихайлова билоў 09.16 Стадия Листов	1
,	лоди.															Провери/	1 Ша	айдуллина шиу 09.16	1
	\ \ !															ГИП	Лu	итвиненко Оч. 16 Таблица гидравлических величин	
	Инб.															ШИан-	<i>n</i> -	PCKOBA 09.16 MIKATIPOEKT	
L																Н.Конт.	1 /18	ескова 99.16	J

The content of the	Oтв. Пруба (провы прубы) Вергительные среденные по отвому висыви. бар и вергительные проток отвому висыви. Бар и вергительные проток отвому висыви. Вар и вергительные проток отвому висыви. Отворые про																						
	19yous 1					Безн	апорный	режим					П	олуна	порны	й режи	IM						
	19yous 1	Отв.	Ромжи	10 HI III I 2 2 2 2 2 2	2201111112	Торини							Вертик	альные	Торцы	трубы,							
Decomposition Decompositio	19yous 1	Отв.	_	_											1								
Paragraphic	Qp Qmax	труоы		торцы труо	ы	0	ткосу насыі	ш	ькр	im	ikp	VBMX	торцы	трубы	откосу	насыпи	Vвых						
1	- - 2,00	D, M					19			r			-										
- - - - - - - - - -	2,50 - 1,12 0,77 0,18 0,014 3,65 8,50 2,56 4,65 3,00 - 1,23 0,88 0,18 0,014 3,83 9,00 2,73 4,73 3,50 - 1,34 0,95 0,18 0,014 3,82 - 9,50 2,91 4,82 4,50 - 1,45 0,88 0,18 0,015 3,90 - 10,37 3,23 4,96 5,00 - 1,65 1,12 0,018 0,015 3,90 10,37 3,23 4,96 5,50 - 1,74 1,19 0,000 0,015 4,07 6,00 - 1,84 1,22 0,000 0,015 4,15 6,00 - 1,84 1,22 0,000 0,016 4,23 6,00 - 1,84 1,22 0,000 0,016 4,27 7,09 2,04 1,32 0,01 0,017 4,32 7,799 2,11 1,39 0,003 0,017 4,48 7,629 2,11 1,39 0,003 0,017 4,48 2,00 - 0,96 0,07 0,017 0,014 4,80 2,00 - 0,96 0,07 0,017 0,014 4,88 7,897 - 2,01 1,88 0,87 0,017 0,018 2,014 4,88 7,897 - 2,01 1,33 0,003 0,017 0,014 4,80 1,000 - 1,158 1,10 0,000 0,015 4,47 1,000 - 1,158 1,10 0,000 0,015 4,15 2,00 - 0,96 0,07 0,017 0,014 4,88 1,000 - 1,158 1,10 0,001 0,017 0,014 0,018 0,014 0,019 0,015 0,018 0,014 0,019 0,015 0,018 0,019 0,015 0,018 0,019 0,015 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,018 0,019 0,019 0,018 0,019 0,018 0,019 0,018 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,01		Qp	Qmax	Н	Qp	Qmax	Н					Qmax	Н	Qmax	H							
- - - - - - - - - -	2,50 - 1,12 0,77 0,18 0,014 3,65 8,50 2,56 4,65 3,00 - 1,23 0,88 0,18 0,014 3,83 9,00 2,73 4,73 3,50 - 1,34 0,95 0,18 0,014 3,82 - 9,50 2,91 4,82 4,50 - 1,45 0,88 0,18 0,015 3,90 - 10,37 3,23 4,96 5,00 - 1,65 1,12 0,018 0,015 3,90 10,37 3,23 4,96 5,50 - 1,74 1,19 0,000 0,015 4,07 6,00 - 1,84 1,22 0,000 0,015 4,15 6,00 - 1,84 1,22 0,000 0,016 4,23 6,00 - 1,84 1,22 0,000 0,016 4,27 7,09 2,04 1,32 0,01 0,017 4,32 7,799 2,11 1,39 0,003 0,017 4,48 7,629 2,11 1,39 0,003 0,017 4,48 2,00 - 0,96 0,07 0,017 0,014 4,80 2,00 - 0,96 0,07 0,017 0,014 4,88 7,897 - 2,01 1,88 0,87 0,017 0,018 2,014 4,88 7,897 - 2,01 1,33 0,003 0,017 0,014 4,80 1,000 - 1,158 1,10 0,000 0,015 4,47 1,000 - 1,158 1,10 0,000 0,015 4,15 2,00 - 0,96 0,07 0,017 0,014 4,88 1,000 - 1,158 1,10 0,001 0,017 0,014 0,018 0,014 0,019 0,015 0,018 0,014 0,019 0,015 0,018 0,019 0,015 0,018 0,019 0,015 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,018 0,019 0,019 0,018 0,019 0,018 0,019 0,018 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,019 0,018 0,019 0,01					2.00		0.00	0.71	0.010	0.014	2.57			9.00	2.40	4.57						
Parameter Para	3.00 - 1.23 0.88 0.018 0.014 3.73 9.00 2.73 4.73 0.350 - 1.34 0.95 0.018 0.014 3.82 9.50 2.91 4.82 4.00 - 1.45 0.98 0.018 0.015 3.90 - 10.37 3.23 4.96 4.50 - 1.55 1.05 0.018 0.015 3.98 5.00 - 1.65 1.12 0.019 0.015 4.77 5.00 - 1.65 1.12 0.019 0.015 4.77 6.00 - 1.44 1.22 0.000 0.016 4.23 6.00 - 1.48 1.22 0.000 0.016 4.23 6.50 1.37 1.32 1.32 0.001 0.017 4.41 6.50 1.37 1.32 0.001 0.017 4.41					,		,		_													
- - - 3.50 - 1.34 0.98 0.018 0.015 3.90 - - 1.95 2.91 4.82	- - 3.50 - 1.54 0.98 0.018 0.015 3.90 - - 9.50 2.91 4.82																						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4,00 - 1,45 0,98 0,018 0,015 3,90 10,37 3,23 4,96 4,50 - 1,55 1,05 1,05 0,018 0,015 3,98					-		-															
2,0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1 -														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0	-	=	-	-	-						-	_	_	-	_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,0	-	-	-		-						-	-	L 1	_							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ħ	-	-	-						•	-	-	-	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	6,20	-						-1	-	-	-	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-	,			0,021			-	-	-	-	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-	•			-			-	-	-	-	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-	-	-	,					-	-	-	-	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		=	-	-	!	7,62*		 				-	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-		-	-	-	-					-1	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-					1						1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2							1	_													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1			_	7,07										_	_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	_	_	T .								_	_	_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										-												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		₩	-	-	- 1	-	- 1				<u> </u>											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	,	-							-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	5,00	-	1,50	1,05	0,016	1		_	-	18,00		5,54						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	6,00	-	1,66	1,14	0,016	0,013	4,26	-	-	_	-	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5	-	-	-	8,00	-	1,95	1,36	0,017	0,013	4,47	-	-	H	-	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3	-	-	-		-				-		=	-		-	-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- - - 12,00 2,49 1,66 0,019 0,014 4,90 - - - - - - - - 12,38 2,55 1,66 0,019 0,015 4,94 - - - -		-	-	-,		-					1	-1	-	-	-	-						
12,38 2,55 1,66 0,019 0,015 4,94	12,38 2,55 1,66 0,019 0,015 4,94	1	-		-	10,83		,					-1	-	-	-	-						
				-			-	,					-		-	-							
- - - 15,51" 2,00 1,74 0,020 0,015 5,05 - - - - -		-		=					1						-								
			-	-	-	-	15,51*	2,00	1,/4	0,020	0,015	3,03	-	-	-	-	-						
		1																			M	ΓK∩∏ŧ	'0E
ΜΓΚ ΩΠΡΟΕΊ	MIK IIPOE																						
																				3.503.3-1	15c.16-01		
3.503.3-115c.16-01	3.503.3-115c.16-01														Изм.	Кол.уч	Лист №до.	: Подпись Да	ата				


																							28
					Безн	апорный	режим					По	лунаг	юрный	і́ режи	IM							
Выпуск О		Ромини	OTT 111 10 000	2201111112	Томини	m. 15. 1						Вертика	льные	Торцы	грубы,								
Выпу	Отв.	_	альные сре орцы труб			рубы, среза гкосу насыг						среза		срезант									
	Трубы D, м			1				һкр	ітр	ікр	Vвых	торцы	грубы	откосу і	насыпи	Vвых							
		Qp	Qmax	Н	Qp	Qmax	Н					Qmax	Н	Qmax	Н								
		4 P	Q mar		₹P	QIII.						VIII.		VIII.									
		-	-	-	2,00	-	0,88	0,71	0,01	0,011	4,00	-	-	18,55	3,36	5,40							
		-	-	-	3,00 4,00	-	1,10 1,29	0,88 1,03	0,01	0,011	4,08 4,17	-	-	18,50 19,00	3,36 3,45	5,40 5,44							
		-	-	_	5,00	-	1,46	1,03	0,01	0,011 0,011	4,17	-		19,00	3,54	5,48							
		-	_	-	6,00	-	1,60	1,28	0,02	0,011	4,34	-	-	20,00	3,64	5,53							
		-	-	-	7,00	-	1,74	1,39	0,02	0,012	4,42	-	-	20,50	3,74	5,57							
		-	-	-	8,00	-	1,87	1,49	0,02	0,012	4,51	-	-	21,00	3,85	5,61							
	2,8	_	-	-	9,00 10,00	-	2,00 2,09	1,60 1,67	0,02	0,012 0,012	4,59 4,68	-	-	21,50 22,00	3,95 4,06	5,65 5,70							
			-	_	11,00	-	2,25	1,80	0,02	0,012	4,76	-	-	22,50	4,17	5,74							
		-	-	-	12,00	-	2,37	1,89	0,02	0,013	4,85	_	_	23,00	4,28	5,78							
		-	-	-	13,00	-	2,48	1,99	0,02	0,013	4,93	-	-	23,50	4,40	5,82							
		-	-	-	14,00	-	2,60	2,08	0,02	0,013	5,02	-	=	23,84	4,48	5,85							
		-	_	-	14,30	14,30 16,00	2,62 2,81	2,10 2,25	0,02	0,014 0,014	5,04 5,19	-	-	-	-	-							
			_	_	-	16,50	2,87	2,29	0,02	0,014	5,23	-		-	-	-							
		-	_	-	2,00	-	0,86	0,69	0,01	0,011	4,11	-	-	22,00	3,60	5,59							
		-	-	-	3,00	-	1,07	0,85	0,01	0,011	4,18	_	-	22,50	3,68	5,63							
	-	-	-	-	4,00	-	1,26	1,01	0,01	0,011	4,26	-	-	23,00	3,77	5,66							
		_	-	-	5,00 6,00	-	1,42 1,57	1,14 1,26	0,01	0,011 0,011	4,33 4,40	-	-	23,50 24,00	3,86 3,95	5,70 5,74							
		-	_	_	7,00	-	1,70	1,36	0,01	0,011	4,48	-		24,50	4,04	5,78							
		-	=	-	8,00	-	1,83	1,46	0,02	0,011	4,55			25,00	4,13	5,81							
	_			-	9,00	-	1,94	1,55	0,02	0,012	4,63	-	-	25,50	4,23	5,85							
	2.0	=	-	-	10,00	-	2,06	1,65	0,02	0,012	4,70	-	=	26,00	4,32	5,89							
	3,0	-	-	_	11,00 12,00	-	2,18 2,29	1,74 1,83	0,02	0,012 0,012	4,78 4,85	_	_	26,50 27,00	4,42 4,52	5,92 5,96							
			_	_	13,00	-	2,40	1,92	0,02	0,012	4,92	-	-	27,50	4,63	6,00							
		-	-	-	14,00	-	2,51	2,00	0,02	0,013	5,00	-	-	28,00	4,73	6,03							
		-	-	-	14,30	-	2,54	2,03	0,02	0,013	5,02	-	-	28,32	4,80	6,06							
	_	-	-	-	15,00	-	2,61	2,09	0,02	0,013	3,96	-	-	-	-	-							
		-	-	_	16,00 16,88	16,90	2,71 2,81	2,17 2,25	0,02	0,014	3,96	-	-	-	-	-							
°×		_	_	_	-	19,00	3,01	2,41	-	-	_	-	-	-	-	-							
. инв		-	-	-	-	19,50	3,06	2,45	-	-	_	_	-	-	-	-							
33ам.																							
שנ																							
и дап																							
ди. п																							
ΠC																							
+																					MEKO	ПРОЕКТ	
подл.																						HIII ULK I	
×																					′ 04		Лист
Инв.														1/101	_{1.} Кол.уч	Aucm	V°док Подпись Дап	uma	5.	503.3-115c.16	n-U1		3
Щ														VI31	n. Mull.y9	/IULIT	гиик поотись дал	ııııu					

Давление по подошве трубы



где \dot{P}_{ν_0} – вертикальное давление на трубу от собственного веса грунта, МПа;

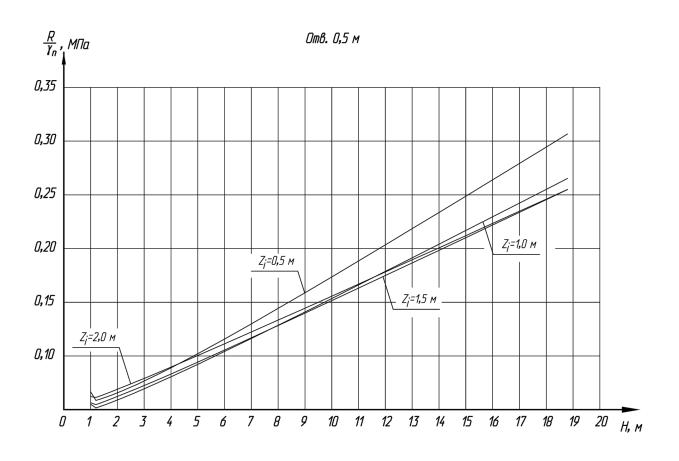
 P_{vk} – вертикальное давление на трубу от временной нагрузки, МПа;

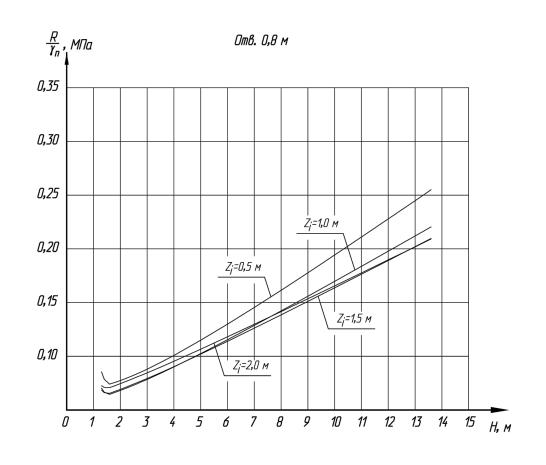
σ - давление по подошве трубы от расчетных нагрузок, МПа;

Давление на грунт по подошве подстилающего слоя

Графики давления на грунт по подошве подстилающего слоя грунта составлены на основании формулы:

 $\gamma(d+z)+\alpha(p-\gamma d)\leq R/\gamma_n$ (cm. CN 35.13330.2011, приложение 4),

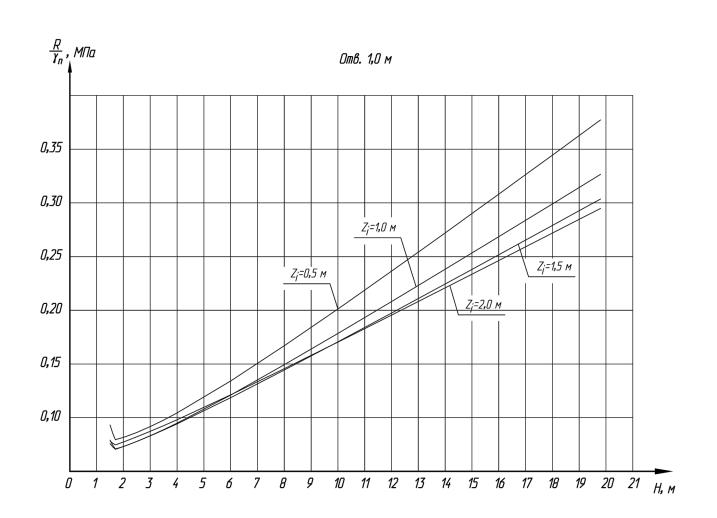

где R - расчетное сопротивление подстилающего грунта, кПа, приложение 2 СПЗ5.13330.2011 для глубины расположения кровли проверяемого слоя грунта;

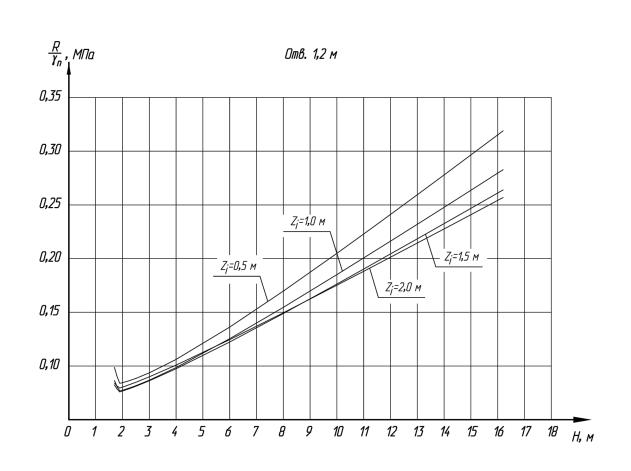

- р среднее давление на грунт, действующее под подошвой условного фундамента мелкого заложения, кПа;
- ү среднее (по слоям) значение расчетного удельного веса грунта, расположенного над кровлей проверяемого подстилающего слоя грунта; допускается принимать 19,62 кН/м;
- d заглубление подошвы фундамента мелкого заложения от расчетной поверхности грунта, м, принимаемое согласно приложению 2 СП
- zı расстояние от подошвы фундамента до поверхности проверяемого подстилающего слоя грунта, м;
- α коэффициент, принимаемый по таблице 4.1 приложения 4 СП *35.13330.2011;*

yn = 1,4 - коэффициент надежности по назначению сооружения.

						3.503.3-115c.16-04			
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разработал		Михайлова		puros	09.16		Стадия	Лист	Листов
Проверил		Шайдуллина		Mais	09.16		Р	1	4
ГИП		Литвиненко		Jul-	09.16	Графики расчетных давлений на грунт			
Н.Конт.		Лескова		P	09.16	ТМГК∩ПРО		POEKT	

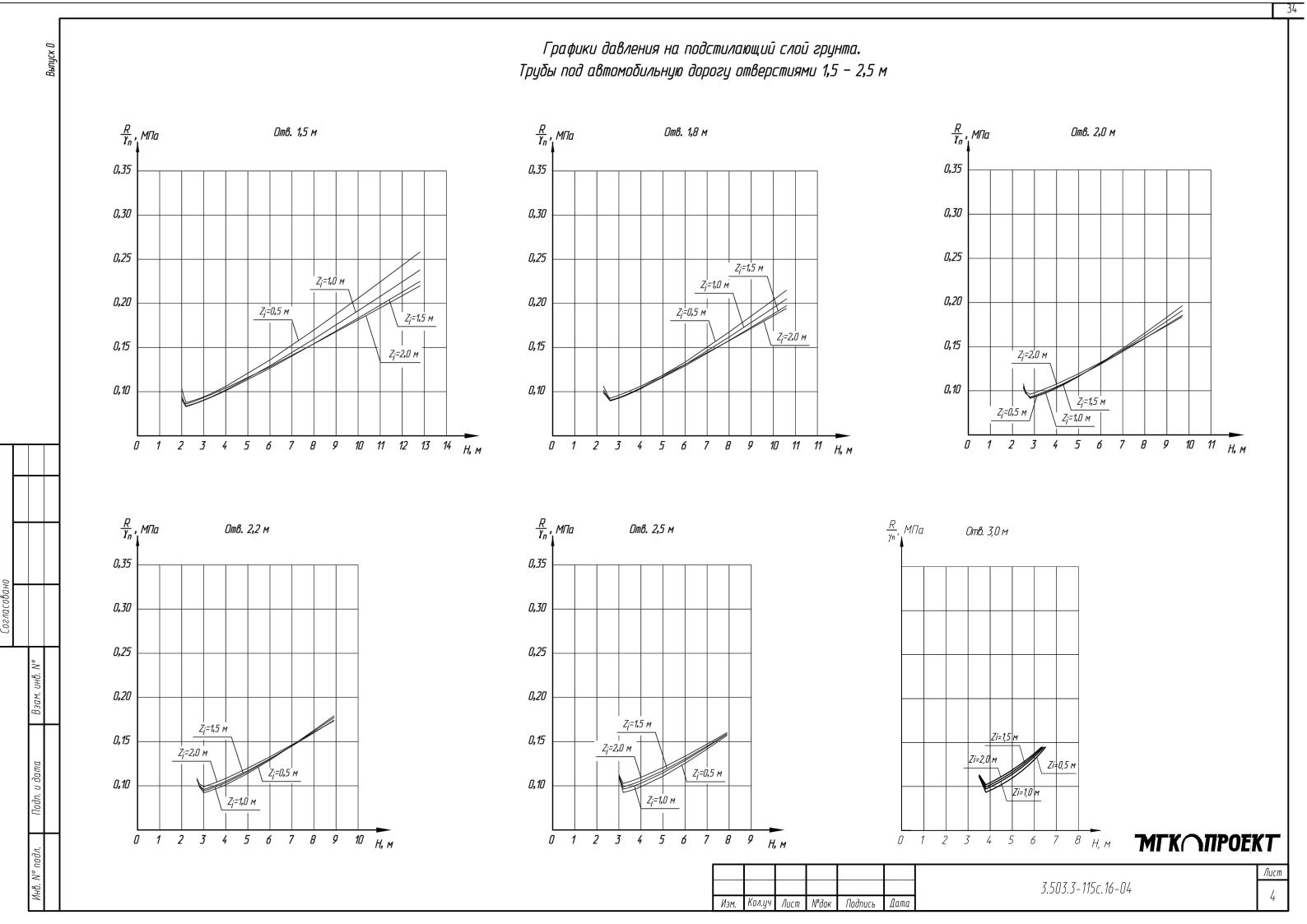
Графики давления на подстилающий слой грунта. Трубы под автомобильную дорогу отверстиями 0,5 – 1,2 м





МГК ПРОЕКТ

Изм.	Кол.цч	Nucm	№док	Подпись	Дата


Графики давления на подстилающий слой грунта. Трубы под автомобильную дорогу отверстиями 0,5 – 1,2 м

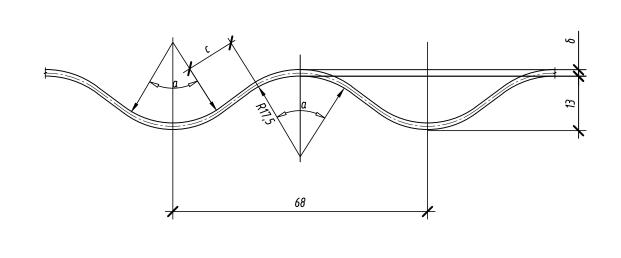
MCK\\TPOEKT

							Nucm
						3.503.3-115c.16-04	7
Изм.	Кол.уч	Лист	№док	Подпись	Дата)

Секции средней и оголовочной частей труб с профилем 68х13 мм с учетом дополнительного полимерного покрытия

Характерист- ка профиля, мм	ование лтов			Диаметр		Размер			
ка профиля, мм	Наимен элемен	Haur 3ne 3ne		трубы, м	Марка*	толщинα δ	радиус кривизны R	Материал	Масса,** кг
	020- пруб			0,5	2xWP-M5.20.L-3.503.3-115c.16	2,0	250,0	10025	30,63
Z013	Зней и стей і	V ////////////////////////////////////	(2xWP-M8.20.L-3.503.3-115c.16	2,0		5/EN100	49,00
68x13	913			0,8	2xWP-M8.25.L-3.503.3-115c.16	2,5	400,0	ль S275	60,24
	Секции ловочно	<u> </u>	•		2xWP-M8.30.L-3.503.3-115c.16	3,0		Ста	71,48

^{*} буквой L в марке обозначена длина секции


Бандаж гофрированный с профилем 68х13 мм с учетом дополнительного полимерного покрытия

Характерист- ка профиля, мм	ование тов		Диаметр		Размер			
ка профиля, мм	Наимен элемен	Эскиз	трубы, м	Марка	толщинα δ	радиус кривизны R	Материал	Масса,* кг
	анный		0,5	B1-5.20-3.503.3-115c.16	2,0	-	125	20,9
68x13	гофрированн	#		B1-8.20-3.503.3-115c.16	2,0		5/EN1002 <u>5</u>	30,1
כו 200			0,8	B1-8.25-3.503.3-115c.16	2,5	-	ль S27.	35,7
	Бандаж	500		B1-8.30-3.503.3-115c.16	3,0		Ста	41,3

^{*} масса приведена на 1 бандаж с учетом дополнительного покрытия 2xWP

Геометрические характеристики гофра 68х13 мм

Толщина δ , мм	С, мм	а, град.	Момент инерции сечения J, см ⁴ /см	Площадь поперечного сечения F, см²/см	Радиус инерции R _j , см	Коэффициент ширины Кш
2,0	19,22	53,828	0,041	0,216	0,433	
2,5	18,89	54,156	0,051	0,270	0,434	1,080
3,0	18,55	54,494	0,061	0,324	0,435	

- 1. Марка секции труб состоит из трех групп, буквы и цифры которых означают:
 - буквы первой группы-вид защитного покрытия секции;
- буквы и цифры второй группы наличие sp и lp означает уменьшенный профиль и увеличенный профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом срезанным по откосу насыпи), отверстие трубы в дм, толщина металла в десятых долях мм и длина секции в дм;
 - -цифры третьей группы-серия типовой документации.
- 2. В номенклатуре приведены марки секций трубы с дополнительным покрытием. При нанесении двухстороннего покрытия HDPE буквы первой группы марки заменяются на 2xWP.

Например, марка секции с вертикально срезанным концом, имеющая дополнительное двустороннее покрытие HDPE, отверстием 0,5 м, толщиной металла 2,0, длиной секции 13,5 м - "2xWP-M5.20.135-3.503.3-115c.16".

То же для секции с торцом срезанным по откосу насыпи - "2xWP-E5.20.135-3.503.3-115c.16".

- 3. Марка бандажа состоит из трех групп, буквы и цифры которых означают:
- буква и цифра первой группы тип бандажа (В1-бандаж с профилем 68x13, В2-бандаж с профилем 125x26, В3-бандаж с профилем 150x50);
 - цифры второй группы отверстие трубы в дм и толщина металла в десятых долях мм;
 - цифры третьей группы серия типовой документации.

Например, марка бандажа типа 1 (гофрированный) для трубы отверстием 0,8 м, с толщиной металла 2,5 мм - "В1-8.25-3.503.3-115с.16"

- 4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами:
 - сварным соединением :
 - болтовым соединением.

Возможно исполнение гладкого бандажа.

5. В типовом проекте предусмотрена сталь \$275, \$280 по ГОСТ 19281, ГОСТ Р 52246 в соответствии с европейскими стандартами EN 10025, EN 10346.

Изм.	Кол.уч	Лист	№док	Подпись	Дата	3.503.3-115c.16 ⁻	-05		
Разрас	δοπαл	Михай	ілова	puros	09.16		Стадия	Лист	Листов
Провер	DU/I	Шайдул	1ЛИНО	Mark	09.16	Номенклатура металлических	Р		1
ГИП	Проверил ГИП	Литвиі	ненко	Jul-	09.16	элементов труб с полимерным покрытием.			
Н.Конп	нт. Лескова		Вa		09.16	Гофр 68х13 мм	MIK		OEKT

^{**} масса приведена на 1 п.м. секции с учетом дополнительного покрытия 2xWP

		Caur	uu saaduai u aaa sabauuai us saai ms	11/ v2E	6						
_		секц	ии средней и оголовочной частей тр	туо с профилем 114x25 мм 	с учето	м <i>00110/1</i> НШПЕ/15Н020 110			UЯ		1
ылу	Характер истика профиля, мм	Наименованию элемента	Эскиз		Диаметр трубы, м	Марка*	Разме толщина б	ры, мм радиус кривизны R	Материа л	Масса,** кг	
						2xWP-sp-M10.20.L-3.503.3-115c.16	2,0			62,84	
						2xWP-sp-M10.25.L-3.503.3-115c.16	2,5			77,32	
					1,0	2xWP-sp-M10.30.L-3.503.3-115c.16	3,0	500,0		91,83	
						2xWP-sp-M10.35.L-3.503.3-115c.16	3,5			106,36	
						2xWP-sp-M10.40.L-3.503.3-115c.16	4,0			120,91	
						2xWP-sp-M12.20.L-3.503.3-115c.16	2,0			75,41	
						2xWP-sp-M12.25.L-3.503.3-115c.16	2,5			92,79	
					1,2	2xWP-sp-M12.30.L-3.503.3-115c.16	3,0	600,0		110,19	
						2xWP-sp-M12.35.L-3.503.3-115c.16	3,5			127,63	
				_		2xWP-sp-M12.40.L-3.503.3-115c.16	4,0			145,09	
						2xWP-sp-M15.25.L-3.503.3-115c.16	2,5			115,98	
		Ψ.			1,5	2xWP-sp-M15.30.L-3.503.3-115c.16	3,0	750,0		137,74	
		īmpyδ				2xWP-sp-M15.35.L-3.503.3-115c.16	3,5			159,54	
		частей		<u> </u>		2xWP-sp-M15.40.L-3.503.3-115c.16 2xWP-sp-M18.25.L-3.503.3-115c.16	4,0 2,5			181,37 139,18	
		т ņонь				2xWP-sp-M18.30.L-3.503.3-115c.16	3,0		Сталь S275/EN10025	165,29	
	114 x 25	- - - - - - - - - - - - - - - - - - -	V/////////////////////////////////////		1,8	2xWP-sp-M18.35.L-3.503.3-115c.16	3,5	900,0	75/EN	191,44	
		n	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			2xWP-sp-M18.40.L-3.503.3-115c.16	4,0		а ль S2	217,64	1. Марка секции труб состоит из трех групп, буквы и цифры которых означают:
		средней	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	# 		2xWP-sp-M20.25.L-3.503.3-115c.16	2,5		Ст	154,64	– буквы первой группы-вид защитного покрытия секции; – буквы и цифры второй группы – наличие sp и lp означает уменьшенный профиль и увел
		ว กกก	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2.0	2xWP-sp-M20.30.L-3.503.3-115c.16	3,0	1000 0		183,65	профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом среза
		Сек	<u>l</u>		2,0	2xWP-sp-M20.35.L-3.503.3-115c.16	3,5	1000,0		212,71	откосу насыпи), отверстие трубы в дм, толщина металла в десятых долях мм и длина секции в дм; -цифры третьей группы-серия типовой документации.
			,			2xWP-sp-M20.40.L-3.503.3-115c.16	4,0			241,82	2. В номенклатуре приведены марки секций трубы с дополнительным покрытием. При нанесении двухстороннего покрытия HDPE буквы первой группы марки заменяются на 2xWP.
						2xWP-sp-M22.30.L-3.503.3-115c.16	3,0			202,02	Например, марка секции с вертикально срезанным торцом,имеющая дополнительное двустороннее пок
-					2,2	2xWP-sp-M22.35.L-3.503.3-115c.16	3,5	1100,0		233,98	HDPE, sp – с уменьшенным профилем 114x25 мм, отверстием 2,5 м, толщиной металла 3,5, длиной секции "2xWP-M25.35.135-3.503.3-115c.16".
				_		2xWP-sp-M22.40.L-3.503.3-115c.16	4,0			266,00	То же для секции с торцом срезанным по откосу насыпи -"2xWP-sp-E25.35.135-3.503.3-115c.16". 3. Марка бандажа состоит из трех групп, буквы и цифры которых означают:
					2.5	2xWP-sp-M25.30.L-3.503.3-115c.16	3,0	4250.0		229,56	– буква и цифра первой группы – тип бандажа (В1-бандаж с профилем 68х13, В2-бандаж с проф
					2,5	2xWP-sp-M25.35.L-3.503.3-115c.16 2xWP-sp-M25.40.L-3.503.3-115c.16	3,5 4,0	1250,0		265,89 302,28	125x26, B3-δαндаж с профилем 150x50, B4-δαндаж с профилем 114x25 мм); – цифры второй группы – отверстие трубы в дм и толщина металла в десятых долях мм;
				-		2xWP-sp-M28.30.L-3.503.3-115c.16	3,0			257,11	– цифры третьей группы – серия типовой документации. Например, марка бандажа типа 4(гофрированный 114x25 мм) для трубы отверстием 1,0 м, с толщиной
					2,8	2xWP-sp-M28.35.L-3.503.3-115c.16	3,5	1400,0		297,79	металла 2,5 мм – "В4-10.25-3.503.3-115с.16"
					_,	2xWP-sp-M28.40.L-3.503.3-115c.16	4,0			338,55	4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами: – сварным соединением ;
						2xWP-sp-M30.35.L-3.503.3-115c.16	3,5			319,07	– болтовым соединением. 5. В типовом проекте предусмотрена сталь S275, S280 по ГОСТ 19281, ГОСТ Р 52246 в соответствии с
					3,0	2xWP-sp-M30.40.L-3.503.3-115c.16	4,0	1500,0		362,73	европейскими стандартами EN 10025 и EN 10346.
	-		ачена длина секции п.м. секции с учетом дополнительного покрытия 2х	I WP				Изм. Ко	01.44 Лист	№док	3.503.3-115c.16-06 Подпись Дата
П								Разработ	ал Миха	йлова 🥢	риход 09.16 Стадия Лист Лист
								Проверил ГИП	Шайду Литви		09.16 Номенклатура металлических Р 1 3 09.16 элементов труб с полимерным покрытием.
								Н.Конт.	Леско	\sim	99.16 109.16 109.16 109.16 109.16 109.16

	(Секции оголовочной части трубы с профилем 114	+x25 мм с учетом до	ПОЛНИТЕЛЬНОГО ПОЛИМ Т	терного п Т	окрытия			
Характеристи ка профиля, мм	Наименование элемента	Эскиз	Диаметр трубы, м	Марка*	Разм толщина ъ	еры, мм радиус кривизны	- Материал	Масса,** кг	
				2xWP-sp-E10.20.L-3.503.3-115c.16	2,0	R		62,84	
				2xWP-sp-E10.25.L-3.503.3-115c.16	2,5	-		77,32	
			1,0	2xWP-sp-E10.30.L-3.503.3-115c.16	3,0	500,0		91,83	
				2xWP-sp-E10.35.L-3.503.3-115c.16	3,5			106,36	
				2xWP-sp-E10.40.L - 3.503.3-115c.16	4,0			120,91	
				2xWP-sp-E12.20.L - 3.503.3-115c.16	2,0			75,41	
				2xWP-sp-E12.25.L - 3.503.3-115c.16	2,5]		92,79	
			1,2	2xWP-sp-E12.30.L - 3.503.3-115c.16	3,0	600,0		110, 19	
				2xWP-sp-E12.35.L-3.503.3-115c.16	3,5]		127,63	
				2xWP-sp-E12.40.L - 3.503.3-115c.16	4,0]		145,09	
				2xWP-sp-E15.25.L-3.503.3-115c.16	2,5			115,98	
			1,5	2xWP-sp-E15.30.L-3.503.3-115c.16	3,0	750,0		137,74	
			1,5	2xWP-sp-E15.35.L-3.503.3-115c.16	3,5	750,0		159,54	
	191			2xWP-sp-E15.40.L-3.503.3-115c.16	4,0]		181,37	Гофр 114x25 мм
	мрубы		R	2xWP-sp-E18.25.L-3.503.3-115c.16	2,5		1	139,18	
	части	\/////////////////////////////////////		2xWP-sp-E18.30.L - 3.503.3-115c.16	3,0	000 0	N1002	165,29	
114×25	вочной		1,8	2xWP-sp-E18.35.L-3.503.3-115c.16	3,5	900,0	S275/EN10025	191,44	
				2xWP-sp-E18.40.L - 3.503.3-115c.16	4,0]	СтальЅ	217,64	
	Секции оголо	 		2xWP-sp-E20.25.L - 3.503.3-115c.16	2,5		Ú	154,64	
	(e		2.0	2xWP-sp-E20.30.L - 3.503.3-115c.16	3,0	1000.0		183,65	
			2,0	2xWP-sp-E20.35.L-3.503.3-115c.16	3,5	- 1000,0		212,71	
				2xWP-sp-E20.40.L - 3.503.3-115c.16	4,0			241,82	T T T T T T T T T T T T T T T T T T T
				2xWP-sp-E22.30.L - 3.503.3-115c.16	3,0			202,02	114
			2,2	2xWP-sp-E22.35.L-3.503.3-115c.16	3,5	1100,0		233,98	
				2xWP-sp-E22.40.L - 3.503.3-115c.16	4,0	1		266,00	
				2xWP-sp-E25.30.L-3.503.3-115c.16	3,0			229,56	
			2,5	2xWP-sp-E25.35.L-3.503.3-115c.16	3,5	1250,0		265,89	
				2xWP-sp-E25.40.L - 3.503.3-115c.16	4,0	1		302,28	
				2xWP-sp-E28.30.L - 3.503.3-115c.16	3,0			257,11	
			2,8	2xWP-sp-E28.35.L-3.503.3-115c.16	3,5	1400,0		297,79	
				2xWP-sp-E28.40.L - 3.503.3-115c.16	4,0]		338,55	
			7.0	2xWP-sp-E30.35.L-3.503.3-115c.16	3,5	4F00 0		319,07	
			3,0	2xWP-sp-E30.40.L-3.503.3-115c.16	4,0	1500,0		362,73	ТМГК∩ПРОЕК
		ичена длина секции п.м. секции с учетом дополнительного покрытия 2xWP							7 5 0 7 7 115 6 12 02
,		-				Изм. Кол.	.уч Лист	№док Пой	3.503.3-115c.16-06 Эпись Дата

		ıue 1	Бандаж гофрированный с про	офилем 114х25 мм с ц		полнительного полиме	1	КРЫТИЯ ——— еры, мм				
	Характеристи ка профиля, мм	Наименован элементс	Эскиз		Диаметр трубы, м	Марка	толщина	радиус кривизны	- Материал	Масса,* кг		
		Наи Э					δ	кривизны R				
						B4-10.20-3.503.3-115c.16	2,0			59,1		
						B4-10.25-3.503.3-115c.16	2,5			70,7		
					1,0	B4-10.30-3.503.3-115c.16	3,0	-		82,3		
						B4-10.35-3.503.3-115c.16	3,5			93,9		
						B4-10.40-3.503.3-115c.16	4,0			105,5		
						B4-12.20-3.503.3-115c.16	2,0			69,1		
						B4-12.25-3.503.3-115c.16	2,5			83,0		
					1,2	B4-12.30-3.503.3-115c.16	3,0	-		97,0		
						B4-12.35-3.503.3-115c.16	3,5			110,9		
						B4-12.40-3.503.3-115c.16	4,0			124,9		
					1,5	B4-15.25-3.503.3-115c.16	2,5			101,6		
						B4-15.30-3.503.3-115c.16	3,0	-		119,0		
			1			B4-15.35-3.503.3-115c.16	3,5			136,4		
				777777777		B4-15.40-3.503.3-115c.16	4,0			153,9		
11		ированный		V/////////		B4-18.25-3.503.3-115c.16	2,5		025	120,2		
$\ \ $	11/ 25		#	V/////////	1,8	B4-18.30-3.503.3-115c.16	3,0 3,5	-	5/EN10	141,0 162,0		
	114 x 25	фог ж		\///////		B4-18.35-3.503.3-115c.16 B4-18.40-3.503.3-115c.16	4,0		Сталь S275/EN10025	182,9		
$\ \ $		Бандаж				B4-20.25-3.503.3-115c.16	2,5		Ста	132,5		
				800		B4-20.30-3.503.3-115c.16	3,0			155,7		
					2,0	B4-20.35-3.503.3-115c.16	3,5	-		179,0		
╽						B4-20.40-3.503.3-115c.16	4,0			202,3		
						B4-22.30-3.503.3-115c.16	3,0			170,4		
					2,2	B4-22.35-3.503.3-115c.16	3,5	_		196,0		
					,	B4-22.40-3.503.3-115c.16	4,0			221,6		
						B4-25.30-3.503.3-115c.16	3,0			192,5		
					2,5	B4-25.35-3.503.3-115c.16	3,5	-		221,5		
╢						B4-25.40-3.503.3-115c.16	4,0			250,6		
						B4-28.30-3.503.3-115c.16	3,0		1	214,5		
					2,8	B4-28.35-3.503.3-115c.16	3,5	-		247,0		
						B4-28.40-3.503.3-115c.16	4,0			279,6		
					3.0	B4-30.35-3.503.3-115c.16	3,5			264,1		
1					3,0	B4-30.40-3.503.3-115c.16	4,0	<u> </u>		299,0	МГК∩ПРО	
,	* масса приведена	на 1 бан	даж с учетом дополнительного покрытия	2xWP								_
									Изм. Кол.	III Auca	3.503.3-115c.16-06 ок Подпись Дата	

										39
J		Секц	ии средней и оголовочной частей труδ с профилем 125х26 г	мм с учето	эм дополнительного п -			ПUЯ •		
уск О	Характер	ование ента		Пиамоппп		Разме	⊇ры, мм • 3	M	M *	
Bun	истика профиля,	90 H	Эскиз	Диаметр трубы, м	Марка*	толщина	радиус кривизны	Материа л	Масса,* кг	
J	MM	Наимен	,			δ	R			
J				'	2xWP-M10.20.L-3.503.3-115c.16	2,0			62,84	84
J		1		'	2xWP-M10.25.L-3.503.3-115c.16	2,5			77,32	
J		1		1,0	2xWP-M10.30.L-3.503.3-115c.16	3,0	500,0		91,83	
ļ		1		'	2xWP-M10.35.L-3.503.3-115c.16	3,5			106,36	
ļ		1		<u> </u>	2xWP-M10.40.L-3.503.3-115c.16	4,0		-	120,91	
J		1		'	2xWP-M12.20.L-3.503.3-115c.16	2,0			75,41	
J		1		'	2xWP-M12.25.L-3.503.3-115c.16	2,5			92,79	
J		1		1,2	2xWP-M12.30.L-3.503.3-115c.16	3,0	600,0		110,19	
J		1		'	2xWP-M12.35.L-3.503.3-115c.16	3,5			127,63	
J		1			2xWP-M12.40.L-3.503.3-115c.16	4,0		_	145,09	
J		1		'	2xWP-M15.25.L-3.503.3-115c.16	2,5			115,98	
J		1		1,5	2xWP-M15.30.L-3.503.3-115c.16	3,0	750,0		137,74	
J		мруδ		'	2xWP-M15.35.L-3.503.3-115c.16	3,5			159,54	
J		стей		<u> </u>	2xWP-M15.40.L-3.503.3-115c.16	4,0		-	181,37	
J	ļ I	10Ū YA		'	2xWP-M18.25.L-3.503.3-115c.16	2,5		3025	139,18	
J	l .as ac	ньодог		1,8	2xWP-M18.30.L-3.503.3-115c.16	3,0	900,0	S275/EN10025	165,29	
	125x26	020		'	2xWP-M18.35.L-3.503.3-115c.16	3,5		6.5275	191,44	
	 	ней и		<u> </u> '	2xWP-M18.40.L-3.503.3-115c.16	4,0		Сталь	217,64	1. Марка секции труд состоит из трех групп, дуквы и цифры которых означают:
+	ļ 1	и сред		'	2xWP-M20.25.L-3.503.3-115c.16 2xWP-M20.30.L-3.503.3-115c.16	2,5 3,0			154,64 183,65	5
	 	Секции		2,0	2xWP-M2U.3U.L-3.5U3.3-115c.16 2xWP-M20.35.L-3.503.3-115c.16	3,U 3,5	1000,0		212,71	профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом срезанным по
+++	 		·	'	2xWP-M20.35.L-3.503.3-115c.16	3,5 4,0			241,82	-цифры третьей группы-серия типовой документации.
	ļ I	1		<u> </u> '	2xWP-M2U.4U.L-3.5U3.3-115c.16 2xWP-M22.30.L-3.503.3-115c.16	3,0		_	202,02	2. В номенклатуре приоедены марки секции труды с дополнительным покрытием. При нанесении
	ļ I	1		2,2	2xWP-M22.30.L-3.503.3-115c.16	3,0 3,5	1100,0		233,98	Например, марка секции с вертикально срезанным торцом, имеющая дополнительное двустороннее
+++	 	1		۷,۷	2xWP-M22.40.L-3.503.3-115c.16	4,0	1100,0		266,00	ποκρωπίανε προτείτες επροφανένει - 125λ20 κικ, οπουρεπίανε 2,5 κι, ιπολιφανόα Μεπιαλλία 3,5, ολιανόα τέκτασα 15,5 κι-
	ļ I	1		<u> </u> '	2xWP-M25.30.L-3.503.3-115c.16	3,0		-	229,56	То же для секции с торцом срезанным по откосу насыпи - "2xWP-E25.35.135-3.503.3-115c.16".
	ļ 1			2,5	2xWP-M25.35.L-3.503.3-115c.16	3,5	1250,0		265,89	5. Hapita Sandawa Colindani da inper epgini, ograni di quepti romopiix osna latom
++-	 			2,5	2xWP-M25.40.L-3.503.3-115c.16	4,0	1230,0		302,28	125х26, В3-бандаж с профилем 150х50, В4-бандаж с профилем 114х25 мм);
9. N°	 				2xWP-M28.30.L-3.503.3-115c.16	3,0		-	257,11	т 11 — цифры третьей группы – серия типовой документации.
M. UH,	 			2,8	2xWP-M28.35.L-3.503.3-115c.16	3,5	1400,0		297,79	——— Например, марка бандажа типа 2(гофрированный) для трубы отверстием 1,0 м, с толщиной металла 2,5 мм 📗
Вза	 				2xWP-M28.40.L-3.503.3-115c.16	4,0			338,55	4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами:
	 				2xWP-M30.35.L-3.503.3-115c.16	3,5		-	319,07	– сбарным соединением ;
	 			3,0	2xWP-M30.40.L-3.503.3-115c.16	4,0	1500,0		362,73	5. В типовом проокто продисмотрона стали. \$275 по ГОСТ 10281 в соотвотствии с овропойскими стандартоми.
дата	 * δυκβού l	В малке обозь	начена длина секции				ļ	•		EN 10025 & EN 10540.
ди. и	_		п.м. секции с учетом дополнительного покрытия 2xWP							
По	I						Изм. К	COALUL Ausm	№док	3.503.3-115c.16-07
	I						Разрабоі		и оок айлова	
подл.	I						Проверил	л Шайд	уллина	Ушиур 09.16 Номенклатура металлических P 1 3
5. N°	I						ГИП	Литв	иненко	Γ ₋ + - 12Γ ₋ , 2/ ₋ ,
NHE	I						Н.Конт.	Леск	гова	O9.16 O9.16 MIKATIPOEKT
—							_		-	

Секции оголовочной части трубы с профилем 125х26 мм с учетом дополнительного полимерного покрытия Геометрические характеристики гофра 125х26 мм Размеры, мм Наименовані элемента Характеристи Диаметр Масса,** Эскиз Марка* Материал Площадь Момент ка профиля, мм трубы, м радиус Радиус толщина Коэффициен Толщина б, пеперечного инерции кривизны а, град. инерции C, MM т ширины Кш сечения Ј. сечения F, Rj, см cm²/cm см⁴/см 62,84 2,0 2xWP-E10.20.L-3.503.3-115c.16 2,0 17,85 71,720 0,191 0,221 0,929 2,5 77,32 2xWP-E10.25.L-3.503.3-115c.16 2,5 72,348 0,239 0,277 17,11 0,930 500,0 91,83 2xWP-E10.30.L-3.503.3-115c.16 3,0 3,0 16,33 73,014 0,288 0,332 0,931 1,107 2xWP-E10.35.L-3.503.3-115c.16 3,5 106,36 3,5 15,52 73,726 0,337 0,388 0,932 4.0 120,91 2xWP-E10.40.L3.503.3-115c.16 4,0 14,72 74,356 0,387 0,443 0,933 2xWP-E12.20.L-3.503.3-115c.16 2,0 75,41 92,79 2xWP-E12.25.L-3.503.3-115c.16 2,5 1,2 2xWP-E12.30.L-3.503.3-115c.16 3,0 600,0 110, 19 3,5 127,63 2xWP-E12.35.L-3.503.3-115c.16 145,09 2xWP-E12.40.L-3.503.3-115c.16 4.0 115,98 2,5 2xWP-E15.25.L-3.503.3-115c.16 137,74 3,0 2xWP-E15.30.L-3.503.3-115c.16 1,5 750,0 3,5 159,54 2xWP-E15.35.L-3.503.3-115c.16 Гофр 125х26 мм 4.0 181,37 2xWP-E15.40.L-3.503.3-115c.16 мруды 139,18 2xWP-E18.25.L-3.503.3-115c.16 насшп Сталь S275/EN10025 3,0 165,29 2xWP-E18.30.L-3.503.3-115c.16 900,0 Секции оголовочной 3,5 191,44 125x26 2xWP-E18.35.L-3.503.3-115c.16 217,64 4,0 2xWP-E18.40.L-3.503.3-115c.16 2xWP-E20.25.L-3.503.3-115c.16 2,5 154,64 3,0 183,65 2xWP-E20.30.L-3.503.3-115c.16 1000,0 3.5 212,71 2xWP-E20.35.L-3.503.3-115c.16 241,82 2xWP-E20.40.L-3.503.3-115c.16 2xWP-E22.30.L-3.503.3-115c.16 3,0 202,02 233,98 3,5 1100,0 2,2 2xWP-E22.35.L-3.503.3-115c.16 4,0 266,00 2xWP-E22.40.L-3.503.3-115c.16 229,56 2xWP-E25.30.L-3.503.3-115c.16 3.0 265,89 2,5 3,5 1250,0 2xWP-E25.35.L-3.503.3-115c.16 4,0 302,28 2xWP-E25.40.L-3.503.3-115c.16 257,11 3,0 2xWP-E28.30.L-3.503.3-115c.16 2,8 3,5 1400.0 297,79 2xWP-E28.35.L-3.503.3-115c.16 4,0 338,55 2xWP-E28.40.L-3.503.3-115c.16 3,5 319,07 2xWP-E30.35.L-3.503.3-115c.16 1500,0 3,0 **MLKULIPOEKT** 362,73 2xWP-E30.40.L-3.503.3-115c.16 * буквой L в марке обозначена длина секции ** масса приведена на 1 п.м. секции с учетом дополнительного покрытия 2xWP 3.503.3-115c.16-07

/lucm

№док

Подпись

		раноаж гофрарованный с про	ЭФИЛЕМ 125Х26 ММ С Ц	јчетом оог 	полнительного полиме	РРНОГО ПОГ Разме				
Характеристи	нован чента	Эскиз		Диаметр	Марка	rusme		· Материал	Масса,*	
ка профиля, мм	Наименование элемента	2		трубы, м	<u>'</u>	толщина б	радиус кривизны R		KS	
					B2-10.20-3.503.3-115c.16	2,0	/\		59,1	
					B2-10.25-3.503.3-115c.16	2,5			70,7	
				1,0	B2-10.30-3.503.3-115c.16	3,0	-		82,3	
					B2-10.35-3.503.3-115c.16	3,5			93,9	
					B2-10.40-3.503.3-115c.16	4,0			105,5	
					B2-12.20-3.503.3-115c.16	2,0			69,1	
					B2-12.25-3.503.3-115c.16	2,5			83,0	
				1,2	B2-12.30-3.503.3-115c.16	3,0	-		97,0	
					B2-12.35-3.503.3-115c.16	3,5			110,9	
					B2-12.40-3.503.3-115c.16	4,0			124,9	
					B2-15.25-3.503.3-115c.16	2,5			101,6	
				1,5	B2-15.30-3.503.3-115c.16	3,0	_		119,0	
				,,,,,	B2-15.35-3.503.3-115c.16	3,5			136,4	
			7777777777		B2-15.40-3.503.3-115c.16	4,0			153,9	
	ный		\///////		B2-18.25-3.503.3-115c.16	2,5		25	120,2	
	лрован	#	(/////////////////////////////////////	1,8	B2-18.30-3.503.3-115c.16	3,0	-	'5/EN10025	141,0	
125x26	гофы		\////////		B2-18.35-3.503.3-115c.16	3,5		.5275/	162,0	
	Бандаж гофрированный				B2-18.40-3.503.3-115c.16	4,0		Сталь S275	182,9	
	9	'	800		B2-20.25-3.503.3-115c.16	2,5			132,5	
				2,0	B2-20.30-3.503.3-115c.16	3,0	-		155,7	
					B2-20.35-3,503,3-115c.16	3,5			179,0	
					B2-20.40-3.503.3-115c.16	4,0			202,3	
					B2-22.30-3.503.3-115c.16	3,0			170,4	
				2,2	B2-22.35-3.503.3-115c.16	3,5	-		196,0	
					B2-22.40-3.503.3-115c.16	4,0			221,6	
				2.5	B2-25.30-3.503.3-115c.16	3,0			192,5	
				2,5	B2-25.35-3.503.3-115c.16	3,5	-		221,5	
					B2-25.40-3.503.3-115c.16	4,0			250,6	
				2.0	B2-28.30-3.503.3-115c.16	3,0			214,5	
				2,8	B2-28.35-3.503.3-115c.16	3,5	-		247,0 279,6	
					B2-28.40-3.503.3-115c.16	4,0				
				3,0	B2-30.35-3.503.3-115c.16	3,5 4,0	-		264,1 299,0	
				<u> </u>	B2-30.40-3.503.3-115c.16	4,0			277,0	ТМГК∩ПРОЕ
* масса ппиведена	ι на 1 бан	даж с учетом дополнительного покрытия	a 2xWP						+ +	3.503.3-115c.16-07

		Сек	ции средней и оголовочной частей т	руδ с профилем 150х50	мм с учет	ом дополнительного по	лимерног	го покрыт	ИЯ	
Выпуск О	Характе	ние					Разме	гры, мм		
Вып	ристика профиля, мм	Наименование злемента	Эскиз		Диаметр трубы, м	Марка*	толщина δ	радиус кривизны R	Материал	Масса,** кг
						2xWP-lp-M20.25.L-3.503.3-115c.16	2,5			170,45
					2,0	2xWP-lp-M20.30.L-3.503.3-115c.16	3,0	1000,0		202,34
					2,0	2xWP-lp-M20.35.L-3.503.3-115c.16	3,5	1000,0		234,24
		5				2xWP-lp-M20.40.L-3.503.3-115c.16	4,0			266,18
		Секции средней и оголовочной частей труб		1		2xWP-lp-M22.30.L-3.503.3-115c.16	3,0			222,57
		астей	<i>\(\(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </i>		2,2	2xWP-lp-M22.35.L-3.503.3-115c.16	3,5	1100,0		257,67
		ной чо	\ \/////////\\\\\\\\\\\\\\\\\\\\\\\\\\			2xWP-lp-M22.40.L-3.503.3-115c.16	4,0		0025	292,79
	150x50	товоч	\ \//////////\\\\\\\\\\\\\\\\\\\\\\\\\			2xWP-lp-M25.30.L-3.503.3-115c.16	3,0		Сталь S275/EN10025	252,92
	טכאטכו	7020 /	\ \////////\\\\\\\\\\\\\\\\\\\\\\\\\\\		2,5	2xWP-lp-M25.35.L-3.503.3-115c.16	3,5	1250,0	16.527	292,80
		Зней і				2xWP-lp-M25.40.L-3.503.3-115c.16	4,0		Стал	332,72
		и среч	7			2xWP-lp-M28.30.L-3.503.3-115c.16	3,0			283,27
		екци			2,8	2xWP-lp-M28.35.L-3.503.3-115c.16	3,5	1400,0		327,94
)				2xWP-lp-M28.40.L-3.503.3-115c.16	4,0			372,64
						2xWP-lp-M30.30.L-3.503.3-115c.16	3,0			303,5
					3,0	2xWP-lp-M30.35.L-3.503.3-115c.16	3,5	1500,0		351,36
						2xWP-lp-M30.40.L-3.503.3-115c.16	4,0	_		399,26

. Согласовано №

* буквой L в марке обозначена длина секции

1. Марка секции труб состоит из четырех групп, буквы и цифры которых означают:

- буквы первой группы-вид защитного покрытия секции;
- буквы и цифры второй группы наличие sp и lp означает утеньшенный профиль и увеличенный профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом срезанным по откосу насыпи), отверстие трубы в дм, толщина металла в десятых долях мм и длина секции в дм;
 - -цифры третьей группы-серия типовой документации.
- 2. В номенклатуре приведены марки секций трубы с дополнительным покрытием. При нанесении двухстороннего покрытия HDPE буквы первой группы марки заменяются на 2xWP.

Например, марка секции с вертикально срезанным торцом, имеющая дополнительное двустороннее покрытие HDPE, с увеличенным профилем 150х50 мм, отверстием 2,5 м, толщиной металла 3,5, длиной секции 13,5 м – "2xWP-lp-M25.35.135-3.503.3-115c.16".

То же для секции с торцом срезанным по откосу насыпи -"2xWP-lp-E25.35.135-3.503.3-115c.16".

- 3. Марка бандажа состоит из трех групп, буквы и цифры которых означают:
- буква и цифра первой группы тип бандажа(В1-бандаж с профилем 68х13, В2-бандаж с профилем 125х26, В3-бандаж с профилем 150х50, В4-бандаж с профилем 114х25 мм);
 - цифры второй группы отверстие трубы в дм и толщина металла в десятых долях мм;
 - цифры третьей группы серия типовой документации.

Например, марка бандажа типа 3 (профиль 150x50 мм) для трубы отверстием 2,0 м, с толщиной металла 2,5 мм – "B3-20.25-3.503.3-115c.16"

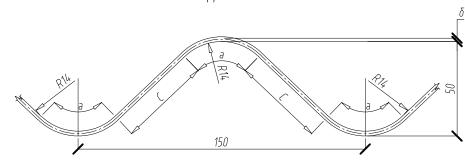
Nucm

МГК∩ПРОЕКТ

Листов

- 4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами:
 - сварным соединением ;
 - болтовым соединением.
- 5. В типовом проекте предусмотрена сталь S275, S280 по ГОСТ 19281, ГОСТ Р 52246 в соответствии с европейскими стандартами EN 10025 и EN 10346.

						3.503.3-115c.16-	- 08
Изм.	Кол.уч	Nucm	№док	Подпись	Дата		
Разрад	ботал	Михай	ілова	Juice	09.16		Ста
Провер	UЛ	Шайду/	1ЛИНА	Mary	09.16	Номенклатура металлических	F
ГИП		Литвин	ненко	Jul-	09.16	элементов труб с полимерным покрытием.	
						Гофр 150х50 мм	M
Н.Конт	•	Леско	ва	JE M	09.16		•


^{**} масса приведена на 1 п.м. секции с учетом дополнительного покрытия 2xWP

Характеристика	вание нта			Диаметр		Разме	еры, мм		Macca,**
профиля, мм	Наименование элемента	Эскиз		трубы, м	Марка*	толщина б	радиус кривизны R	- Материал	KZ
					2xWP-lp-E20.25.L-3.503.3-115c.16	2,5			170,45
				2.0	2xWP-lp-E20.30.L-3.503.3-115c.16	3,0	1000 0		202,34
				2,0	2xWP-lp-E20.35.L-3.503.3-115c.16	3,5	1000,0		234,24
				2xWP-lp-E20.40.L-3.503.3-115c.16	4,0			266,18	
	δуд		8		2xWP-lp-E22.30.L-3.503.3-115c.16	3,0			222,57
	150x50	2,2	2xWP-lp-E22.35.L-3.503.3-115c.16	3,5	1100,0		257,67		
				2xWP-lp-E22.40.L-3.503.3-115c.16	4,0		025	292,79	
450 50	ньодо				2xWP-lp-E25.30.L-3.503.3-115c.16	3,0		Сталь S275/EN10025	252,92
150x50	1 020 L			2,5	2xWP-lp-E25.35.L-3.503.3-115c.16	3,5	1250,0	16 52 75	292,80
	дней ı	<u> </u>			2xWP-lp-E25.40.L-3.503.3-115c.16	4,0		Стал	332,72
	оп сре				2xWP-lp-E28.30.L-3.503.3-115c.16	3,0]	283,27
	Секц			2,8	2xWP-lp-E28.35.L-3.503.3-115c.16	3,5	1400,0		327,94
					2xWP-lp-E28.40.L-3.503.3-115c.16	4,0			372,64
					2xWP-lp-E30.30.L-3.503.3-115c.16	3,0			303,50
				3,0	2xWP-lp-E30.35.L-3.503.3-115c.16	3,5	1500		351,36
					2xWP-lp-E30.40.L-3.503.3-115c.16	4,0			399,26

Геометрические характеристики гофра 150х50 мм

Толщина δ, мм	С, мм	а, град.	Момент инерции сечения J, см ⁴ /см	Площадь пеперечного сечения F, см²/см	Радиус инерции Rj, см	Коэффициен т ширины Кш
2,5	47,70	88,69	0,900	0,310	1,705	
3,0	47,17	89,03	1,085	0,372	1,709	1,24
3,5	46,64	89,38	1,270	0,434	1,711	1,24
4,0	46,10	89,74	1,459	0,497	1,714	

Гофр 150х50 мм

МГК ПРОЕКТ

оукоой с о марке ооозначена олина секции
** масса ппиведена на 1 пм. секили с ичетом дополнительного покрытия

** масса приведена на 1 п.м. секции с учетом дополнительного покрытия 2	<i>«WP</i>
---	------------

ı						
ı						
1	Изм.	Кол.уч	Лист	№док	Подпись	Дата

* масса приведена на 1 бандаж с учетом дополнительного покрытия 2xWP

		Бандаж гофрированный с профилем 150х50 мм с ц	учетом дог	полнительного полим	ерного по	крытия		
Характеристика	эвание гнта		Диаметр	M	Разме	еры, мм	M	Macca,*
профиля, мм	Наименование элемента	Эскиз	трубы, м	Марка	толщина б	радиус кривизны R	Материал	KZ
				B3-20.25-3.503.3-115c.16	2,5			145, <i>2</i>
			2,0	B3-20.30-3.503.3-115c.16	3,0]		170,7
			2,0	B3-20.35-3.503.3-115c.16	3,5] -		196,2
				B3-20.40-3.503.3-115c.16	4,0			221,8
	δήσι			B3-22.30-3.503.3-115c.16	3,0			186,9
	ะmeủ ก		2,2	B3-22.35-3.503.3-115c.16	3,5	-		214,9
	ой ча			B3-22.40-3.503.3-115c.16	4,0		3025	243,0
150x50	повочн			B3-25.30-3.503.3-115c.16	3,0		 Сталь S275/EN10025	211,1
ΙΣΟΧΣΟ	7020 N		2,5	B3-25.35-3.503.3-115c.16	3,5	-		243,0
	гдней	800		B3-25.40-3.503.3-115c.16	4,0		Ста.	275,0
	Секции средней и оголовочной частей труб	7 7		B3-28.30-3.503.3-115c.16	3,0			235,4
	Секц		2,8	B3-28.35-3.503.3-115c.16	3,5	-		271,2
				B3-28.40-3.503.3-115c.16	4,0			306,9
				B3-30.30-3.503.3-115c.16	3,0			251,6
			3,0	B3-30.35-3.503.3-115c.16	3,5	_		289,9
				B3-30.40-3.503.3-115c.16	4,0			328,2

МГК ПРОЕКТ

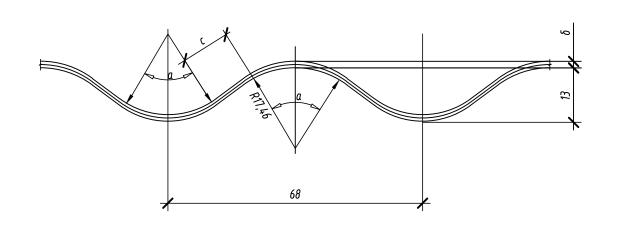
Man Konjiy Airm Miday Dadayi Jama

3.503.3-115c.16-08

Секции средней и оголовочной частей труб с профилем 68х13 мм без учета дополнительного покрытия

Характерист- ка профиля, мм	ование тов		Диаметр		Размер			
ка профиля, мм	Наимен элемен	Эскиз	трубы, м	Марка*	толщинα δ	радиус кривизны R	Материал	Масса,** кг
	ı ого- труб		0,5	ST-M5.20.L-3.503.3-115c.16	2,0	250,0	125	29,61
(0.43	средней и ў частей		_	ST-M8.20.L-3.503.3-115c.16	2,0		./EN10025	47,37
68x13			0,8	ST-M8.25.L-3.503.3-115c.16	2,5	400,0	ль S275,	58,61
	Секции Ловочно	<u> </u>		ST-M8.30.L-3.503.3-115c.16	3,0		Ста.	69,85

^{*} буквой L в марке обозначена длина секции


Бандаж гофрированный с профилем 68х13 мм без учета дополнительного покрытия

Характерц ка профиля,	-шл ование тов	- January Carachara Carach			Размер			
ка профиля,	` З Наимен элемен	Эскиз	трубы, м	Марка	толщина δ	радиус кривизны R	Материал	Масса,* кг
	анный		0,5	B1-5.20-3.503.3-115c.16	2,0	-	725	20,4
68x13	гофрированный			B1-8.20-3.503.3-115c.16	2,0		5/EN1002	29,2
כו גסס			0,8	B1-8.25-3.503.3-115c.16	2,5	-	ль S275	34,9
	Бандаж	500		B1-8.30-3.503.3-115c.16	3,0		Ста	40,5

^{*} масса приведена на 1 бандаж без учета дополнительного покрытия

Геометрические характеристики гофра 68х13 мм

Толщина δ , мм	C, MM	а, град.	Момент инерции сечения J, см ⁷ см	Площадь поперечного сечения F, см ⁷ см	Радиус инерции R _j , см	Коэффициент ширины Кш
2,0	0 19,22 53,8		0,041	0,216	0,433	
2,5	2,5 18,89 54,156		0,051	0,270	0,434	1,080
3,0 18,55		54,494	0,061	0,324	0,435	

- 1. Марка секции труб состоит из трех групп, буквы и цифры которых означают:
 - буквы первой группы-вид защитного покрытия секции;
- буквы и цифры второй группы наличие sp и lp означает уменьшенный профиль и увеличенный профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом срезанным по откосу насыпи), отверстие трубы в дм, толщина металла в десятых долях мм и длина секции в дм;
 - -цифры третьей группы-серия типовой документации.
- 2. В номенклатуре приведены марки секций трубы без дополнительного покрытия.

Например, марка секции с вертикально срезанным торцом без дополнительного покрытия, отверстием 0,5 м, толщиной металла 2,0 мм, длиной секции 13,5 м-"ST-M5.20.135-3.503.3-115c.16".

То же для секции с торцом срезанным по откосу насыпи – "ST-E5.20.135-3.503.3-115c.16".

- 3. Марка бандажа состоит из трех групп, буквы и цифры которых означают:
- буква и цифра первой группы тип бандажа (В1-бандаж с профилем 68х13, В2-бандаж с профилем 125х26, В3-бандаж с профилем 150х50, В4-бандаж с профилем 114х25 мм);
 - цифры второй группы отверстие трубы в дм и толщина металла в десятых долях мм;
 - цифры третьей группы серия типовой документации.

Например, марка бандажа типа 1 (гофрированный, профиль 68х13 мм) для трубы отверстием 0,8 м, с толщиной металла 2,5 мм – "B2-8.25-3.503.3-115c.16"

- 4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами:
 - сварным соединением ;
 - болтовым соединением.
- 5. В типовом проекте предусмотрена сталь S275, S280 по ГОСТ 19281, ГОСТ Р 52246 в соответствии с европейскими стандартами EN 10025 и EN 10346.

	Voor	7	1/0.2		п	3.503.3-115c.16-	- 09		
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разрад	δοπαл	Михай	ілова	hurs	09.16		Стадия	Лист	Листов
Провер	ОИЛ	Шайдул	1лина	Many	09.16	Номенклатура металлических	Р		1
ГИП		Литвин	ненко	Jul-	09.16	элементов труб с цинковым покрытием.			
T T T T T T T T T T T T T T T T T T T				Гофр 68х13 мм	MIK		OFKT		
Н.Конт	Н.Конт. Лескова	R. In	09.16		""		OLKI		

^{**} масса приведена на 1 п.м. секции без учета дополнительного покрытия

### Compared Control (Control	Характеристи ка профиля, мм	Наименование элемента	Эскиз	Диаметр трубы, м	Марка*	Разм. толщина х	еры, мм радиус кривизны	· Материал	Масса,** кг	
Secretary Supplied 25 180 18					ST-sp-E10.20.L - 3.503.3-115c.16	2,0	R		60,75	
10										
## 64,594-365-504-56-56 ## 64,594-365-504-56-				1,0			500,0		89,73	
10					ST-sp-E10.35.L-3.503.3-115c.16	3,5			104,26	
10 / 12 10 /					ST-sp-E10.40.L-3.503.3-115c.16	4,0			118,81	
\$\frac{1}{2} \frac{1}{2} \frac					ST-sp-E12.20.L-3.503.3-115c.16	2,0			72,90	
Stage Mark Stage of Stage					ST-sp-E12.25.L-3.503.3-115c.16	2,5			90,27	
### 1945 - 1945				1,2	ST-sp-E12.30.L-3.503.3-115c.16	3,0	600,0		107,68	
St-q-75721_101116C 25 50 50 50 50 50 50 50					ST-sp-E12.35.L-3.503.3-115c.16	3,5			125,11	
18 25 25 25 25 25 25 25 2					ST-sp-E12.40.L-3.503.3-115c.16	4,0			142,57	
St					ST-sp-E15.25.L-3.503.3-115c.16	2,5			112,84	
15 15 15 15 15 15 15 15				45	ST-sp-E15.30.L-3.503.3-115c.16	3,0	750.0		134,59	
18975 18				1,5	ST-sp-E15.35.L-3.503.3-115c.16	3,5	150,0		156,39	
18 125 St. op. 200, 25 St.		l9			ST-sp-E15.40.L-3.503.3-115c.16	4,0			178,22	Гофр 114х25 мм
\$\$\square\$\text{\$\frac{1}{2}\square\$\text{\$\frac{1}{2}\sqrt{\frac{1}\sqrt{\frac{1}\sqrt{\frac{1}\sqrt{\frac{1}\sqrt{\frac{1}\sqrt{\frac{1}\sqrt{\frac{1}\					ST-sp-E18.25.L-3.503.3-115c.16	2,5			135,41	
\$\frac{51.50\color{1}}{51.50\color{1}}\frac{50.51}{50.51}\frac{50.51}{		части		10	ST-sp-E18.30.L-3.503.3-115c.16	3,0	000.0	V10025	161,51	
\$1.9-\$28.01.3583.195.8	114×25	очной		<i>Ι</i> ,δ	ST-sp-E18.35.L-3.503.3-115c.16	3,5	900,0	275/Ei	187,66	
2.0 S1-sp-201351-35051-3505.6					ST-sp-E18.40.L-3.503.3-115c.16	4,0		паль S.	213,86	
2.0 ST sp-\$28.351.3583.156.16 3.5 3.5 1000.0 1000.0 200.551		אלחח ס	\		ST-sp-E20.25.L-3.503.3-115c.16	2,5))	150,45	
ST-sp-E20351-35053-155.66 3,5 209,51 ST-sp-E20481-35033-155.66 3,0 197,4 22 ST-sp-E20351-35033-155.66 3,0 197,4 22 ST-sp-E20351-35033-155.66 3,0 197,4 23 ST-sp-E20351-35033-155.66 4,0 229,37 ST-sp-E20351-35033-155.66 3,0 224,32 25 ST-sp-E20361-35033-155.66 4,0 297,02 25 ST-sp-E20361-35033-155.66 4,0 297,02 26 ST-sp-E20361-35033-155.66 3,0 251,24 28 ST-sp-E20361-35033-155.66 3,0 251,24 29 ST-sp-E20361-35033-155.66 3,0 251,24 29 ST-sp-E20361-35033-155.66 3,0 251,24 29 ST-sp-E20361-35033-155.66 3,0 332,67 30 ST-sp-E20361-35033-155.66 4,0 332,67 30 ST-sp-E20361-35033-155.66 4,0 332,67 30 ST-sp-E20361-35033-155.66 4,0 335,43 ST-sp-E20361-35033-155.66 4,0 355,43 ST-sp-E20361-3503-155.66 4,0 355,43 ST-sp-E20361-3503-155.66 4,0 355,43 ST-sp-E20361-3503-3503-155.66 4,0 355,43 ST-sp-E20361-3503-3503-155.66 4,0 355,43 ST-sp-E20361-3503-3503-155.66 4,0 355,43 ST-sp-E20361-3503-3503-155.66 4,0		(e		2.0	ST-sp-E20.30.L-3.503.3-115c.16	3,0	1000 n		179,46	
ST-sp-F23.01-35033-155.6				2,0	ST-sp-E20.35.L-3.503.3-115c.16	3,5	1000,0		208,51	
\$1-sp-E22.361_3593.51-55:6 3.0 \$197,4 2,2 \$1-sp-E22.461_3593.51-155:6 3.5 \$190,0 \$229,37 \$1-sp-E22.461_3593.51-155:6 3.0 \$24,32 \$25 \$1-sp-E25.361_3593.51-155:6 3.0 \$27-sp-E25.361_3593.51-155:6 4.0 \$1-sp-E25.461_3593.51-155:6 4.0 \$1-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.361_3593.51-155:6 3.0 \$27-sp-E28.461_3593.31-155:6 4.0 \$38,000 1.6 марке обозначена длина секции *Sykbou' 1.6 марке обозначена длина секции					ST-sp-E20.40.L-3.503.3-115c.16	4,0			237,62	
ST-sp-E25.30L-35033-115c.16					ST-sp-E22.30.L-3.503.3-115c.16	3,0			197,4	114
31-sp-E25.301-35033-115c.16 3,0 251-sp-E25.301-35033-115c.16 3,0 251-sp-E25.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 251-sp-E28.301-35033-115c.16 3,0 3,0 251-sp-E28.301-35033-115c.16 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0				2,2	ST-sp-E22.35.L-3.503.3-115c.16	3,5	1100,0		229,37	
2,5 ST-sp-E25.35L-3.503.3-115c.16 3,5 1250,0 260,64 ST-sp-E25.40L-3.503.3-115c.16 4,0 297,02 ST-sp-E28.35L-3.503.3-115c.16 3,0 251,24 ST-sp-E28.35L-3.503.3-115c.16 3,5 1400,0 291,92 ST-sp-E28.40L-3.503.3-115c.16 4,0 332,67 ST-sp-E30.40L-3.503.3-115c.16 3,5 1500,0 312,77 ST-sp-E30.40L-3.503.3-115c.16 4,0 356,43 ST-sp-E30.40L-3.503.3-115c.16 ST-sp-E30.40L-3.503.3-115c.16 4,0 356,43 ST-sp-E30.40L-3.503.3-115c.16 ST-sp-E					ST-sp-E22.40.L-3.503.3-115c.16	4,0			261,38	
ST-sp-E25.4QL-35033-115c.16 4,0 297,02 ST-sp-E28.3QL-35033-115c.16 3,0 251,24 2,8 ST-sp-E28.4QL-35033-115c.16 3,5 1400,0 291,92 ST-sp-E28.4QL-35033-115c.16 4,0 332,67 3,0 ST-sp-E30.35L-35033-115c.16 3,5 312,77 57-sp-E30.4QL-35033-115c.16 4,0 356,43 MIKAIPOI					ST-sp-E25.30.L-3.503.3-115c.16	3,0			224,32	
2,8 ST-sp-E28.30.L-3.503.3-115c.16 3,0 251,24 5T-sp-E28.40.L-3.503.3-115c.16 3,5 1400,0 332,67 3,0 ST-sp-E28.40.L-3.503.3-115c.16 4,0 332,67 3,0 ST-sp-E30.40.L-3.503.3-115c.16 3,5 312,77 357-sp-E30.40.L-3.503.3-115c.16 4,0 356,43				2,5	ST-sp-E25.35.L-3.503.3-115c.16	3,5	1250,0		260,64	
2,8 ST-sp-E28.35.L-3.503.3-115c.16 3,5 1400,0 291,92 332,67 ST-sp-E30.35.L-3.503.3-115c.16 4,0 332,67 312,77 3,0 ST-sp-E30.40.L-3.503.3-115c.16 4,0 356,43 МГКОПРОТ					ST-sp-E25.40.L-3.503.3-115c.16	4,0			297,02	
ST-sp-E28.40.L-3.503.3-115c.16 4,0 332,67 3,0 ST-sp-E30.40.L-3.503.3-115c.16 3,5 312,77 5T-sp-E30.40.L-3.503.3-115c.16 4,0 356,43 * буквой L в марке обозначена длина секции					ST-sp-E28.30.L-3.503.3-115c.16	3,0			251,24	
3,0 ST-sp-E30.35.L-3.503.3-115c.16 3,5 ST-sp-E30.40.L-3.503.3-115c.16 4,0 356,43 312,77 356,43 312,77 356,43				2,8	ST-sp-E28.35.L-3.503.3-115c.16	3,5	1400,0		291,92	
3,0 ST-sp-E30.40.L - 3.503.3-115c.16 4,0 356,43 ТГКОПРО І * буквой L в марке обозначена длина секции					ST-sp-E28.40.L-3.503.3-115c.16	4,0			332,67	
* буквой L в марке обозначена длина секции				7 N	ST-sp-E30.35.L-3.503.3-115c.16	3,5	15NN N		312,77	
** 0 2 4 5 3				٦,,υ	ST-sp-E30.40.L-3.503.3-115c.16	4,0	ט,טטכו		356,43	™ CK ∩ IIPOE
	* буквой L в мар	оке обозна Опа на 1 г	ичена длина секции							

			Банд	Заж гофрированный	і с профилем 114х25	мм без уч	ета дополнительного •	покрыти	Я		_	_	
Daliyck U	Характеристи	ıвание нта				Диаметр	.,	Размі	⊇ры, мм	 	Macca,*		
	ка профиля, мм	Наименование элемента		Эскиз		трубы, м	Марка	толщина б	радиус кривизны	- Материал	K2		
							B4-10.20-3.503.3-115c.16	2,0	K		57,4	1	
							B4-10.25-3.503.3-115c.16	2,5			69,0	1	
						1,0	B4-10.30-3.503.3-115c.16	3,0	-		80,6	1	
							B4-10.35-3.503.3-115c.16	3,5			92,2		
							B4-10.40-3.503.3-115c.16	4,0			103,9		
							B4-12.20-3.503.3-115c.16	2,0			67,1		
							B4-12.25-3.503.3-115c.16	2,5			81,0		
						1,2	B4-12.30-3.503.3-115c.16	3,0	-		95,0		
							B4-12.35-3.503.3-115c.16	3,5			108,9		
							B4-12.40-3.503.3-115c.16	4,0			122,9		
							B4-15.25-3.503.3-115c.16	2,5			99,1		
						1,5 -	B4-15.30-3.503.3-115c.16	3,0			116,5		
							B4-15.35-3.503.3-115c.16	3,5			134,0		
				+	777777777		B4-15.40-3.503.3-115c.16	4,0			151,4		
1		ІНЫÜ			\///////		B4-18.25-3.503.3-115c.16	2,5		25	117,1		
1		ированный	#		(//	1,8	B4-18.30-3.503.3-115c.16	3,0	-	/EN10025	138,0		
	114 x 25	пфог .			\/////////////////////////////////////		B4-18.35-3.503.3-115c.16	3,5		,5275/	158,9		
		Бандаж гофри			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		B4-18.40-3.503.3-115c.16	4,0		CmanbS275/	179,9		
		9			800		B4-20.25-3.503.3-115c.16	2,5			129,2		
						2,0	B4-20.30-3.503.3-115c.16	3,0	-		152,4	_	
1							B4-20.35-3.503.3-115c.16	3,5			175,6	_	
							B4-20.40-3.503.3-115c.16	4,0		-	198,9		
						2.2	B4-22.30-3.503.3-115c.16	3,0			166,7		
						2,2	B4-22.35-3.503.3-115c.16	3,5 4,0	-		192,3 217,9		
							B4-22.40-3.503.3-115c.16 B4-25.30-3.503.3-115c.16	3,0			188,3	_	
						2,5	B4-25.35-3.503.3-115c.16	3,5	-		217,3	-	
						2,5	B4-25.40-3.503.3-115c.16	4,0	-		246,4	-	
							B4-28.30-3.503.3-115c.16	3,0			209,8	-	
						2,8	B4-28.35-3.503.3-115c.16	3,5	_		242,3		
						2,0	B4-28.40-3.503.3-115c.16	4,0			274,9	-	
							B4-30.35-3.503.3-115c.16	3,5			259,0	-	
						3,0	B4-30.40-3.503.3-115c.16	4,0	-		294,0	ТМГК ∩ПРОВ	E
	* масса приведенс	а на 1 бан	ндаж без учета с	дополнительного покрытия	7							7.507.7.445.47.40	
									-	Изм Коли	14 Nucm		

Û			Секции оголовочной части труб	бы с профилем 125х26	мм без уч	ета дополнительного	о покрыти	ІЯ									
Выпуск О	Характеристи	Зание <i>Іта</i>			Диаметр		Разме	гры, мм		Macca **		Геометр	рические ; •	- 	істики гофра Т	125x26 mr	1
9	ка профиля, мм	Наименование элемента	Эскиз		дииметр трубы, м	Марка*	толщина б	радиус кривизны R	Материал	Масса,** кг	Толщина б, мм	C, MM	а, град.	Момент инерции сечения J,	Площадь пеперечного сечения F,	Радиус инерции Rj, см	Коэффициен т ширины Кш
						ST-E10.20.L-3.503.3-115c.16	2,0			60,75	2,0	17,85	71,720	см ⁴ /см 0,191	cm²/cm 0,221	0,929	
						ST-E10.25.L-3.503.3-115c.16	2,5			75,23	2,5	17,11	72,348	0,737	0,277	0,930	
					1,0	ST-E10.30.L-3.503.3-115c.16	3,0	500,0		89,73	3,0	16,33	73,014	0,288	0,332	0,931	1, 107
						ST-E10.35.L-3.503.3-115c.16	3,5			104,26	3,5	15,52	73,726	0,337	0,388	0,932	
						ST-E10.40.L-3.503.3-115c.16	4,0			118,81	4,0	14,72	74,356	0,387	0,443	0,933	
						ST-E12.20.L-3.503.3-115c.16	2,0			72,90							
						ST-E12.25.L-3.503.3-115c.16	2,5			90,27							
					1,2	ST-E12.30.L-3.503.3-115c.16	3,0	600,0		107,68				Гофр 125х.	26 мм		
						ST-E12.35.L-3.503.3-115c.16	3,5			125,11							
						ST-E12.40.L-3.503.3-115c.16	4,0			142,57							δ
						ST-E15.25.L-3.503.3-115c.16	2,5			112,84			(
					1,5	ST-E15.30.L-3.503.3-115c.16	3,0	750,0		134,59		a					20
					,,,,	ST-E15.35.L-3.503.3-115c.16	3,5	750,0		156,39				P. D. O			78
		δы				ST-E15.40.L-3.503.3-115c.16	4,0			178,22							
 		м трубы		R		ST-E18.25.L-3.503.3-115c.16	2,5		5	135,41					/		
		і части		#	1,8	ST-E18.30.L-3.503.3-115c.16	3,0	900,0	EN1002	161,51				'			
	125x26	овочной			1,0	ST-E18.35.L-3.503.3-115c.16	3,5	700,0	16 S275/EN10025	187,66	7			125			-
		оголор				ST-E18.40.L-3.503.3-115c.16	4,0		Сталь!	213,86							
		Секции огол	X X			S <i>T-E20.25.L-3.503.3-115c.16</i>	2,5)	150,45							
) [te			2,0	ST-E20.30.L-3.503.3-115c.16	3,0	1000,0		179,46							
3					2,0	ST-E20.35.L-3.503.3-115c.16	3,5	1000,0		208,51							
2 2						ST-E20.40.L-3.503.3-115c.16	4,0			237,62							
: : :						ST-E22.30.L-3.503.3-115c.16	3,0			197,4							
					2,2	ST-E22.35.L-3.503.3-115c.16	3,5	1100,0		229,37							
<i>b.</i> N°						ST-E22.40.L-3.503.3-115c.16	4,0			261,38							
.м. инв.						ST-E25.30.L-3.503.3-115c.16	3,0			224,32							
Взам.					2,5	ST-E25.35.L-3.503.3-115c.16	3,5	1250,0		260,64							
						ST-E25.40.L-3.503.3-115c.16	4,0			297,02							
та						ST-E28.30.L-3.503.3-115c.16	3,0			251,24							
и дат					2,8	ST-E28.35.L-3.503.3-115c.16	3,5	1400,0		291,92							
Тодп.						ST-E28.40.L-3.503.3-115c.16	4,0			332,67							
					3,0	ST-E30.35.L-3.503.3-115c.16	3,5	1500,0		312,77							
эдл.					<i>),</i> υ	ST-E30.40.L-3.503.3-115c.16	4,0	ט,טטכו		356,43					MI		POEKT
Инв. № подл	* буквой L в мар ** масса приведе	эке обозна ена на 1 п.	чена длина секции м. секции без учета дополнительного покрытия											7 [] 7 7 11			Лист
1HE	,		,					Изм. Кол.у	ч Лист N	№док Подпи	сь Дата			3.503.3-115	DL.10-11		2

			Бандаж зофрированний с профилом 12	5×26 MM 202 III	ioma dono autimo ai tioso	DONDUMU					51
0		_ [Бандаж гофрированный с профилем 12	JXZO MM UE3 Y9	1ema 00110/1Hame/16H020 	Покрыша	Я				
Выпуск О	Характеристи	ование гнта	3	Диаметр	Марка	Разме	гры, мм	Материал	Масса,*		
Р	ка профиля, мм	Наименование элемента	Эскиз	трубы, м	пирки	толщина х	радиус кривизны	пишериил	KS		
		+			B2-10.20-3.503.3-115c.16	2,0	R		57,4		
					B2-10.25-3.503.3-115c.16	2,5			69,0		
				1,0	B2-10.30-3.503.3-115c.16	3,0	-		80,6		
					B2-10.35-3.503.3-115c.16	3,5			92,2		
					B2-10.40-3.503.3-115c.16	4,0			103,9		
					B2-12.20-3.503.3-115c.16	2,0			67,1		
					B2-12.25-3.503.3-115c.16	2,5			81,0		
				1,2	B2-12.30-3.503.3-115c.16	3,0	-		95,0		
					B2-12.35-3.503.3-115c.16	3,5			108,9		
					B2-12.40-3.503.3-115c.16	4,0			122,9		
					B2-15.25-3.503.3-115c.16	2,5			99,1		
				1,5	B2-15.30-3.503.3-115c.16	3,0	_		116,5		
				ر,۱	B2-15.35-3.503.3-115c.16	3,5	-		134,0		
					B2-15.40-3.503.3-115c.16	4,0			151,4		
		ный			B2-18.25-3.503.3-115c.16	2,5		25	117,1		
		эфрированный	±	1,8	B2-18.30-3.503.3-115c.16	3,0	_	75/EN10025	138,0		
	125x26	зофы	+	,	B2-18.35-3.503.3-115c.16	3,5		/5175/	158,9		
		Бандаж го			B2-18.40-3.503.3-115c.16	4,0		Сталь S2',	179,9		
		9	800		B2-20.25-3.503.3-115c.16	2,5			129,2		
				2,0	B2-20.30-3.503.3-115c.16	3,0	-		152,4		
					B2-20.35-3.503.3-115c.16	3,5			175,6		
					B2-20.40-3.503.3-115c.16	4,0			198,9		
					B2-22.30-3.503.3-115c.16	3,0			166,7		
				2,2	B2-22.35-3.503.3-115c.16	3,5	-		192,3		
18. N°					B2-22.40-3.503.3-115c.16	4,0 3,0			217,9 188,3		
ам. ин				2,5	B2-25.30-3.503.3-115c.16 B2-25.35-3.503.3-115c.16	3,5			217,3		
Вза				2,3	B2-25.40-3.503.3-115c.16	4,0	-		246,4		
					B2-28.30-3.503.3-115c.16	3,0			209,8		
тта				2,8	B2-28.35-3.503.3-115c.16	3,5	_		242,3		
л. и дс				2,0	B2-28.40-3.503.3-115c.16	4,0			274,9		
Поді					B2-30.35-3.503.3-115c.16	3,5			259,0		
\mathbb{H}				3,0	B2-30.40-3.503.3-115c.16	4,0	-		294,0	MIV A HONEVT	,
подл.	* масса приведена	на 1 бан	ндаж без учета дополнительного покрытия		1	ļ				™ TK∩ПРОЕКТ	4
Инв. N°							-		+ +	лисп 3.503.3-115c.16-11 3	_
И								Изм. Кол.у	ч Лист Л		╛

		гры, мм	Разме					ние	Характе
Масса, кг	Материал	радиус кривизны R	толщина δ	Марка*	Диаметр трубы, м		Эскиз	Наименование злемента	, ристика профиля, мм
165,83			2,5	ST-lp-M20.25.L-3.503.3-115c.16					
197,72		1000,0	3,0	ST-lp-M20.30.L-3.503.3-115c.16	2,0				
229,6.		1000,0	3,5	ST-lp-M20.35.L-3.503.3-115c.16	2,0				
261,5			4,0	ST-lp-M20.40.L-3.503.3-115c.16				6	
217,4			3,0	ST-lp-M22.30.L-3.503.3-115c.16		1		Секции средней и оголовочной частей труб	
252,5		1100,0	3,5	ST-lp-M22.35.L-3.503.3-115c.16	2,2		[асте	
287,7	Материал З секции тру		4,0	ST-lp-M22.40.L-3.503.3-115c.16			[н <u>п</u> он	
247,1			3,0	ST-lp-M25.30.L-3.503.3-115c.16		#	 	10804	150x50
287,0.	16.527	1250,0	3,5	ST-lp-M25.35.L-3.503.3-115c.16	2,5		 	л 020/	טכאטכו
326,9	Стал		4,0	ST-lp-M25.40.L-3.503.3-115c.16				дней (
276,8			3,0	ST-lp-M28.30.L-3.503.3-115c.16			1	п срес	
321,4		1400,0	3,5	ST-lp-M28.35.L-3.503.3-115c.16	2,8			екци	
366,1			4,0	ST-lp-M28.40.L-3.503.3-115c.16)	
296,5			3,0	ST-lp-M30.30.L-3.503.3-115c.16					
344,4		1500,0	3,5	ST-lp-M30.35.L-3.503.3-115c.16	3,0				
392,3.			4,0	ST-lp-M30.40.L-3.503.3-115c.16					

. Погласовано Погласовано

- * буквой L в марке обозначена длина секции
- ** масса приведена на 1 п.м. секции без учета дополнительного покрытия

- 1. Марка секции труб состоит из четырех групп, буквы и цифры которых означают:
- буквы первой группы-вид защитного покрытия секции;
- буквы и цифры второй группы наличие sp и lp означает уменьшенный профиль и увеличенный профиль; вид секции трубы (М-секция с вертикально срезанным торцом, Е-секция с торцом срезанным по откосу насыпи), отверстие трубы в дм, толщина металла в десятых долях мм и длина секции в дм;
 - -цифры третьей группы-серия типовой документации.
- 2. В номенклатуре приведены марки секций трубы без дополнительного покрытия.

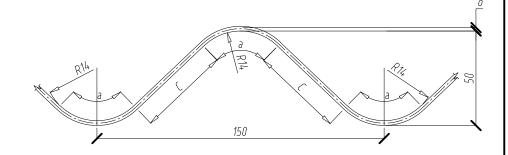
Например, марка секции с вертикально срезанным торцом без дополнительного покрытия, с увеличенным профилем 150х50 мм, отверстием 2,5 м, толщиной металла 3,5, длиной секции 13,5 м - "ST-lp-M25.35.135-3.503.3-115c.16".

То же для секции с торцом срезанным по откосу насыпи-"ST-lp-E25.35.135-3.503.3-115c.16".

- 3. Марка бандажа состоит из трех групп, буквы и цифры которых означают:
- буква и цифра первой группы тип бандажа(В1-бандаж с профилем 68х13, В2-бандаж с профилем 125х26, В3-бандаж с профилем 150х50; В4-бандаж с профилем 114х25);
 - цифры второй группы отверстие трубы в дм и толщина металла в десятых долях мм;
 - цифры третьей группы серия типовой документации.

Например, марка бандажа типа 3 (гофрированный, профиль 150x50 мм) для трубы отверстием 2,0 м, с толщиной металла 2,5 мм – 'B3-20.25-3.503.3-115c.16''

- 4. Крепление уголка элемента бандажа к гофрированному листу, выполняется двумя способами:
 - сварным соединением ;
 - болтовым соединением.
- 5. В типовом проекте предусмотрена сталь S275, S280 по ГОСТ 19281, ГОСТ Р 52246 в соответствии с европейскими стандартами EN 10025 и EN 10346.


						3.503.3-115c.16-	- 12		
Изм.	Кол.уч	Лист	№док	Подпись	Дата				
Разрац	ботал	Михай	лова	hursel	09.16		Стадия	Лист	Nucmol
Провер	ОПЛ	Шайду/	1ЛИНА	Mary	09.16	Номенклатура металлических	Р	1	3
ГИП		Литвин	ненко	Jul-	09.16	элементов труб с цинковым покрытием.			
						Гофр 150х50 мм	MIK		OFK'
Н.Конп).	Леско	ва	A Para	09.16		****		OLK.

_			Секции оголовочной части трубы с профилем 150x50) мм без у	чета дополнительного	покрыти	ІЯ		
Выпуск О	Характеристика	ование гнта	2	Диаметр	Марка*	Размі	≘ры, мм	Маториал	Масса,**
	профиля, мм	Наименование элемента	Эскиз	трубы, ^м	тирки	толщина δ	радиус кривизны R	— Мамериал Сталь S275/EN10025	KZ
					ST-Ip-E20.25.L-3.503.3-115c.16	2,5			165,83
				2,0	ST-Ip-E20.30.L-3.503.3-115c.16	3,0	1000,0		197,72
				2,0	ST-Ip-E20.35.L-3.503.3-115c.16	3,5	1000,0		229,62
					ST-Ip-E20.40.L-3.503.3-115c.16	4,0			261,55
		δήσο			ST-Ip-E22.30.L-3.503.3-115c.16	3,0			217,49
		cmeบ้ ก		2,2	ST-Ip-E22.35.L-3.503.3-115c.16	3,5	1100,0		252,58
		10Ū 4ā.			ST-lp-E22.40.L-3.503.3-115c.16	4,0		Сталь S275/EN10025	287,71
	150x50	Секции средней и оголовочной частей труб			ST-lp-E25.30.L - 3.503.3-115c.16	3,0			247,14
	טכאטכו	u 020/		2,5	ST-lp-E25.35.L-3.503.3-115c.16	3,5	1250,0		287,03
		гдней			ST-lp-E25.40.L-3.503.3-115c.16	4,0		Ста	326,94
		וחח כשו			ST-Ip-E28.30.L-3.503.3-115c.16	3,0			276,80
		Секп		2,8	ST-lp-E28.35.L-3.503.3-115c.16	3,5	1400,0		321,47
					ST-lp-E28.40.L-3.503.3-115c.16	4,0			366,17
					ST-lp-E30.30.L-3.503.3-115c.16	3,0			296,57
Т				3,0	ST-lp-E30.35.L-3.503.3-115c.16	3,5	1500		344,43
					ST-lp-E30.40.L-3.503.3-115c.16	4,0			392,33

Геометрические характеристики гофра 150х50 мм

Толщина δ, мм	C, MM	а, град.	Момент инерции сечения J, см ⁴ /см	Площадь пеперечного сечения F, см²/см	Радиус инерции Rj, см	Коэффициен т ширины Кш
2,5	47,70	88,69	0,900	0,310	1,705	
3,0	47,17	89,03	1,085	0,372	1,709	1,24
3,5	46,64	89,38	1,270	0,434	1, 711	1,24
4,0	46,10	89,74	1,459	0,497	1,714	

Гофр 150х50 мм

	_		_	_	
* δυκβου L	В	марке	обозначена	dлина	cekuul

^{*} буквой L в марке обозначена длина секции ** масса приведена на 1 п.м. секции без учета дополнительного покрытия

Изм	Кол.ич	Лист	№док	Подпись	Пата

МГК ПРОЕКТ

Характеристико	Бание нта		Диаметр		Разме	еры, мм	- Материал	Масса
профиля, мм	Наименование элемента	Эскиз	трубы, м	Марка	толщина δ	KIIIINII RHU		KZ
				B3-20.25-3.503.3-115c.16	2,5			141,:
			2,0	B3-20.30-3.503.3-115c.16	3,0			167,
			2,0	B3-20.35-3.503.3-115c.16	3,5	_		192,
				B3-20.40-3.503.3-115c.16	4,0			218
	δήσι			B3-22.30-3.503.3-115c.16	3,0]	182
	тей п		2,2	B3-22.35-3.503.3-115c.16	3,5	-		210
	ой час		///////	B3-22.40-3.503.3-115c.16	4,0		1025	239
450.50	овочн	±(B3-25.30-3.503.3-115c.16	3,0		Сталь S275/EN10025	206
150x50	J 020 L		2,5	B3-25.35-3.503.3-115c.16	3,5] -		238
	Секции средней и оголовочной частей труб			B3-25.40-3.503.3-115c.16	4,0			270
	пи сре	'	B3-25.40-3.503.3-115c.16 4 B3-28.30-3.503.3-115c.16 3 2,8 B3-28.35-3.503.3-115c.16 3 B3-28.40-3.503.3-115c.16 4	3,0		1	230	
	Секц	7 1		B3-28.35-3.503.3-115c.16	3,5	-	-	266
				B3-28.40-3.503.3-115c.16	4,0			301,
				B3-30.30-3.503.3-115c.16	3,0			246
_			3,0	B3-30.35-3.503.3-115c.16	3,5	-		284
				B3-30.40-3.503.3-115c.16	4,0	1		322
_								

* масса приведена на 1 бандаж без учета дополнительного покрытия

МГК∩ПРОЕКТ

Изм Кол.ич Лист №дак Подоись Лата

3.503.3-115c.16-12

/lucm 3

Взам. инв. N°	
Подп. и дата	
Инв. № подл.	

				Размеры, мм		Расход м	атериалов	
Наименование	Эскиз	Марка	а	Ь	С	Бетон, м ³	Армматура А-I, кг	Масса, т
		Φ1n.л -5-100	1000	675	110	0,70	4,0	1,7
		Ф1п.л-8-120	1200	710	110	0,87	4,0	2,1
		Φ1n.л-10-130	1300	770	110	0,99	4,0	2,4
		Φ1n.л-12-150	1500	850	110	1,22	4,0	2,9
		Φ1n.л-15-165	1650	1000	110	1,44	4,0	3,5
	9	Ф1п.л-18-190	1900	1000	110	1,67	5,8	4,0
		Ф1n.л-20-200	2000	1000	110	1,76	5,8	4,2
		Ф1п.л-22-220	2200	1000	110	2,09	5,8	5,0
		Φ1n.л-25-235	2350	1200	110	2,44	7,6	5,9
		Ф1п.л-28-260	2500	1300	110	3,19	9,4	7,0
Блок		Ф1п.л-30-280	2700	1400	110	3,78	9,4	8,3
фундамента		Φ2 -5-155	1550	675	110	1,08	4,0	2,6
		Φ2-8-185	1850	710	110	1,32	4,0	3,2
		Φ2-10-205	2050	770	110	1,52	4,0	3,7
	.i	Φ2-12-225	2250	850	110	1,76	5,8	4,2
		Φ2-15-255	2550	1000	110	2,12	7,6	5,1
		Φ2-18-285	2850	1000	110	2,40	7,6	5,8
		Φ2-20-305	3050	1000	110	2,55	7,6	6,1
		Φ2-22-325	3250	1100	110	2,88	8,0	6,8
		Φ2-25-355	3550	1200	110	3,50	8,0	8,4
		Φ2-28-385	3850	1300	110	4,37	9,8	10,1
		Φ2-30-405	4050	1400	110	5,05	9,8	11,7
Блок экрана		Φ3	1500	1400	300	0,59	4,0	1,4
Блок лотка		Л1	490	140	46	0,0022	0,08*	5,3**

^{*} Арматура по ГОСТ 6727-80 класса Вр

1. Марка блока состоит из трех групп, буквы и цифры которых означают:

- буквы и цифра первой группы сокращенное название блока;
- цифры второй группы отверстие трубы в дм;
- цифры третьей группы длина блока в см.
- 2. Материал блоков фундаментов и экрана бетон класса В20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6. Арматура по ГОСТ 5781-82 класса А-I, марки СТЗсп по ГОСТ 380-2005
- 3. Материал блоков лотка мелкозернистый бетон, полимербетон или асфальтобетон.

Класс бетона по прочности на сжатие назначается не ниже В20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6. Состав полимербетона или асфальтобетона должен соответствовать требованиям ОДМ 218.2.001-2009. Арматура по ГОСТ 6727-80 класса Вр.

- 4. Поверхности блоков фундамента и экрана, соприкасающиеся с грунтом, покрываются обмазочной гидроизоляцией "Гермокран-гидро" ТУ 2513-001-20504464-2003 или битумной мастикой по ГОСТ 30693-2000.
- 5. Предоставленные бетонные блоки для гофрированного профиля 114х25 мм принимаются по аналогии для гофрированного профиля 125x26 мм.

						3.503.3-115c.16	- 13		
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разра	<i>Ботал</i>	Михай	лова	hund	09.16		Стадия	Лист	Листов
Провер	Проверил — — — — — — — — — — — — — — — — — — —		1ЛИНА	Mary	09.16		Р		1
ГИП		Литвин	ненко	J.m./	09.16	Номенклатура бетонных блоков. Гофр 125х26 мм			
				- (POEKT
Н.Конп),	Леско	ва	R. Marie	09.16		U^UU UN	71 1111111	

^{**} Масса лотка приведена в кг

				Размеры, мм		Расход м	атериалов	
Наименование	Эскиз	Марка	а	Ь	С	Бетон, м ³	Армматура А-I, кг	Масса, т
	,	Ф1п.л-20-170	2050	1000	110	1,52	5,8	4,4
		Ф1п.л-22-195	2250	1000	110	1,87	7,6	<i>5,2</i>
		Ф1п.л-25-205	2400	1200	110	2,20	7,6	6,1
		Ф1п.л-28-225	2550	1300	110	2,75	7,6	7,1
		Φ1n.л-30-240	2750	1400	110	3,25	7,6	8,4
	.I	Φ2-20-310	3100	1000	110	2,75	7,6	6,3
		Φ2-22-330	3300	1100	110	2,97	8,0	6,8
		Φ2-25-360	3600	1200	110	3,74	11,6	8,6
		Φ2-28-390	3900	1300	110	4,62	15,2	10,4
		Φ2-30-410	4 100	1400	110	5,34	15,2	11,9
Блок экрана		Φ3	1500	1400	300	0,59	4,0	1,4
Блок лотка		Л2	750	150	70	0,0051	0,12*	12,3**

- буквы и цифра первой группы сокращенное название блока;
- цифры второй группы отверстие трубы в дм;
- цифры третьей группы длина блока в см.
- 2. Материал блоков фундаментов и экрана бетон класса В20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6. Арматура по ГОСТ 5781-82 класса A-I, марки СТЗсп по ГОСТ
- 3. Материал блоков лотка мелкозернистый бетон, полимербетон или асфальтобетон.

Класс бетона по прочности на сжатие назначается не ниже B20 по ГОСТ 26633-2012, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6.

Состав полимербетона или асфальтобетона должен соответствовать требованиям ОДМ 218.2.001-2009. Арматура по ГОСТ 6727-80 класса Вр.

4. Поверхности блоков фундамента и экрана, соприкасающиеся с грунтом, покрываются обмазочной гидроизоляцией "Гермокран-гидро" ТУ 2513-001-20504464-2003 или битумной мастикой по ГОСТ 30693-2000.

						3.503.3-115c.16	- 14		
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разра	ботал	Михай	лова	hursel	09.16		Стадия	Лист	Листов
Провер	ОИЛ	Шайдул	1ЛИНА	Mary	09.16		Р		1
ГИП		Литвин	ненко	Jul	09.16	Номенклатура бетонных блоков. Гофр 150х50 мм			
							MIK		OEKT
Н.Конп	7.	Леско	ва	Je Property of the Control of the Co	09.16				OLKI

^{*} Арматура по ГОСТ 6727-80 класса Вр ** Масса лотка приведена в кг

^{1.} Марка блока состоит из трех групп, буквы и цифры которых означают:

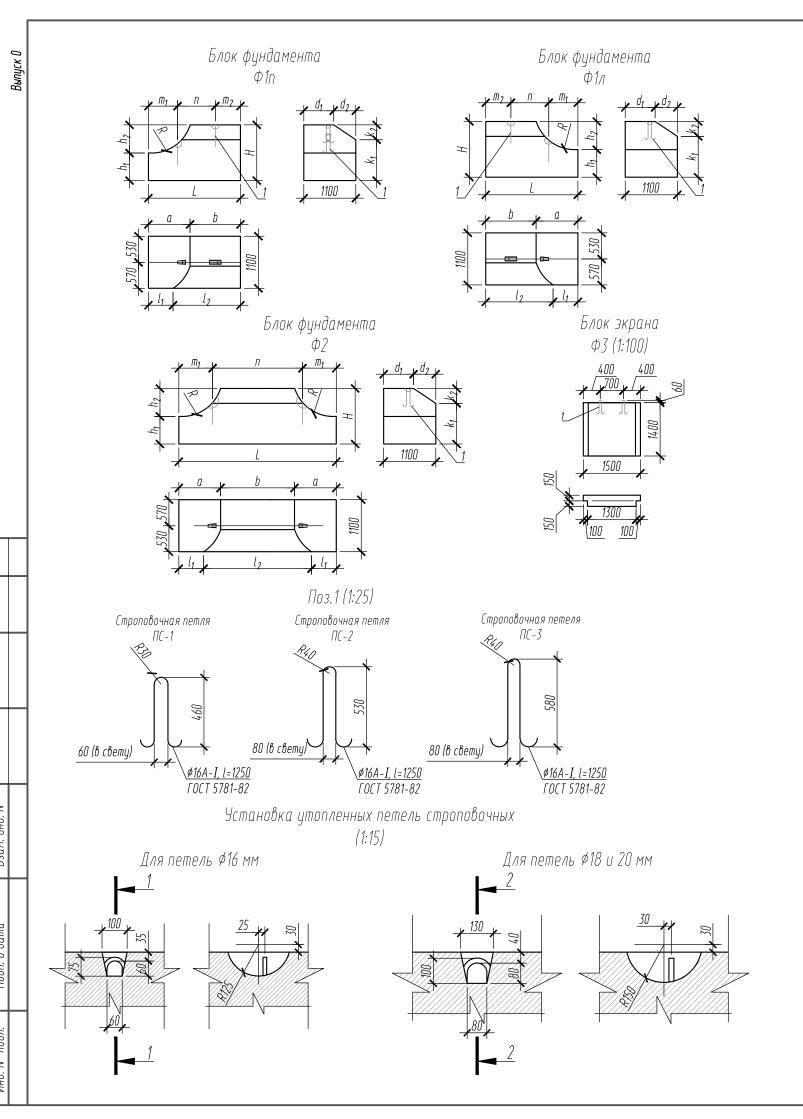
80 (B cBemy)

\<u>Ø16A-I, l=1250</u> FOCT 5781-82

60 (в свету)

								Разме	ры, мм								 Масса блока,
Марка	а	Ь	d1	d2	<i>l</i> 1	12	L	Н	h1	h2	m1	m2	n	R	k1	k2	т
Ф1п.л -5-100	255	745	995	105	210	790	1000	675	500	175	200	160	640	275	500	175	1,7
Ф1п.л-8-120	365	835	960	140	275	925	1200	710	500	210	300	240	660	425	600	110	2,1
Ф1п.л-10-130	470	830	890	210	310	990	1300	770	500	270	350	320	630	540	600	170	2,4
Ф1п.л-12-150	570	930	850	250	4 10	1090	1500	850	500	350	450	320	730	640	650	200	2,9
Ф1п.л-15-165	735	915	650	450	450	1200	1650	1000	500	500	500	310	840	790	640	360	3,5
Ф1п.л-18-190	830	1070	650	450	495	1405	1900	1000	500	500	600	400	900	940	640	360	4,0
Ф1п.л-20-200	890	1110	650	450	520	1480	2000	1000	500	500	650	450	900	1040	640	360	4,2
Ф1п.л-22-220	1005	1195	650	450	700	1500	2200	1000	500	600	650	380	1170	1140	740	360	5,0
Φ1n.л-25-235	1090	1260	550	550	705	1645	2350	1200	600	600	700	450	1200	1290	800	400	5,9
Ф1п.л-28-250	1235	1365	650	450	885	1715	2500	1300	700	600	810	480	1310	1440	850	550	7,0
Φ1n.л-30-270	1300	1500	650	450	940	1860	2700	1400	800	600	800	480	1520	1540	900	600	8,3
Ф2 -5-155	255	1040	995	105	210	1130	1550	675	500	175	400	-	750	275	600	170	2,6
Ф2-8-185	365	1120	960	140	275	1300	1850	710	500	210	475	-	900	425	600	170	3,2
Φ2-10-205	470	1110	890	210	310	1430	2050	770	500	270	500	-	1050	540	600	170	3,7
Φ2-12-225	570	1110	850	250	4 10	1430	2250	850	500	350	500	-	1250	640	650	200	4,2
Φ2-15-255	735	1080	650	450	450	1350	2550	1000	500	500	580	-	1390	790	640	360	5,1
Ф2-18-285	830	1190	650	450	495	1860	2850	1000	500	500	675	-	1500	940	640	360	5,8
Ф2-20-305	890	1270	650	450	520	2010	3050	1000	500	500	710	-	1630	1040	640	360	6,1
Ф2-22-325	1005	1240	650	450	700	1850	3250	1100	500	600	780	-	1690	1140	740	360	6,8
Φ2-25-355	1095	1360	550	550	705	2140	3550	1200	600	600	840	-	1870	1290	800	400	8,4
Ф2-28-385	1250	1350	650	450	880	2970	3850	1300	700	600	900	-	2950	1450	850	550	10,1
Φ2-30-405	1310	1430	650	450	940	3110	4050	1400	800	600	900	-	3150	1570	900	600	11,7
Ф3							_										1,4

												Количе													Масса
Поз.	Наименование	1п.л-5	1п.л-8	1п.л-10	1п.л-12	1n.л-15	1п.л-18	1п.л-20	1п.л-22	1п.л-25	1п.л-28	1n.л-30	2-5	2-8	2-10	2-12	2-15	2-18	2-20	2-22	2-25	2-28	2-30	7	ед., кг
		- 100	- 120	-130	- 150	- 165	- 190	-200	-220	-235	-260	-280	- 155	-185	-205	-225	-255	- <i>255</i>	-305	-325	-355	-380	-400)	CU., NC
1	Строповочная петля ПС-1	2	2	2	2	2							2	2	2					4				2	2,0
	ПС-2						2	2								2					4				2,9
	ПС-3								2	2	2	2					2	2	2			4	4		3,8
		0,70	0,87	0,99	1,22	1,44	1,67	1,76	2,09	2,44	3,19	3,78	1,08	1,32	1,52	1,76	2,12	2,40	2,55	2,88	3,50	4,37	5,05	0,59	

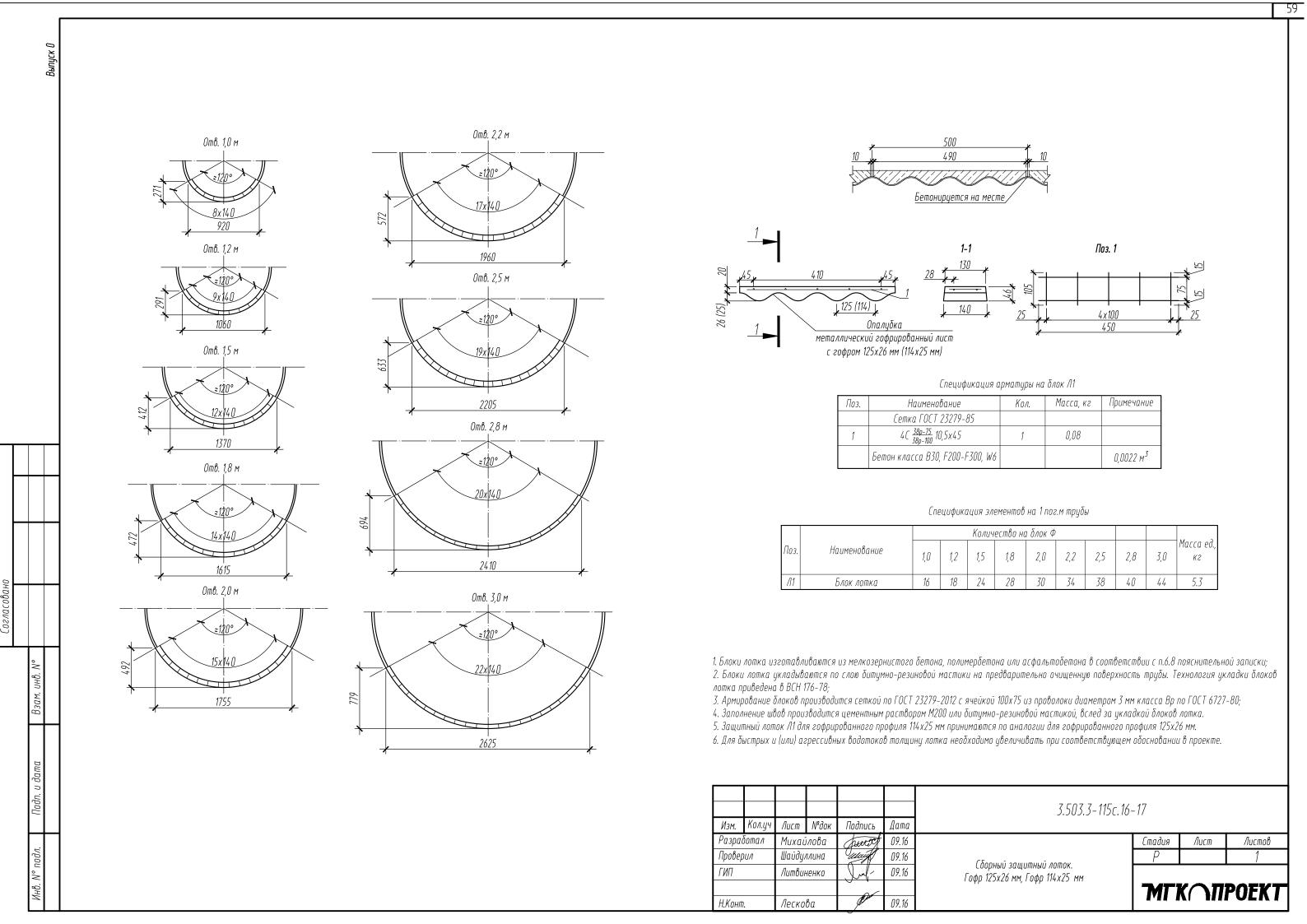

1. Монтажные петли изготавливаются из арматурной стали класса А-I по ГОСТ 5781-82 марки Ст3сп по ГОСТ 380-2005. 2. Для блоков Ф2-22-325 и Ф2-25-355 петли сваривать попарно.

11222	L	0,70
Установка утопленных строповочных пете.	16	
<u>1</u> <u>−</u> (1:15)		
25 T T T T T T T T T T T T T T T T T T T		30
1 2		

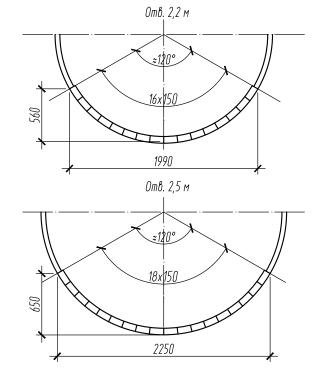
80 (B cBemy)

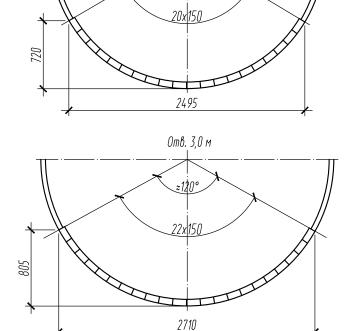
\<u>Ø16A-I, l=1250</u> FOCT 5781-82 \<u>Ø16A-I, l=1250</u> FOCT 5781-82

						3.503.3-115c.16	_ 15		
Изм.	Кол.уч	Лист	№док	Подпись	Дата	3.303.3 1136.10	כו		
Разр	αδο <i>т</i> αл	Михай	ілова	hurs	09.16		Стадия	Лист	Листов
Прове	грил	Шайду,	ллина	May	09.16		Р		1
ГИП		Литви	ченко	Jul	09.16	Блок бетонный Ф. Гофр 125х26 мм			
H Kou		Лосио	ß.a	Report .	00.14		MIK		POEKT

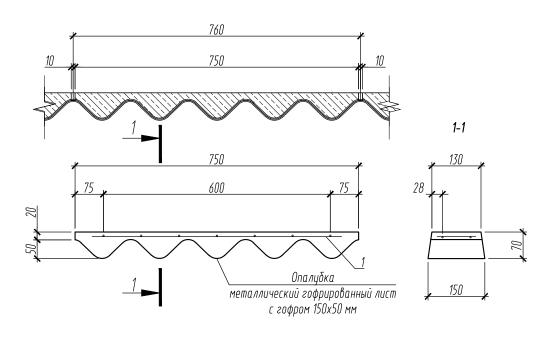


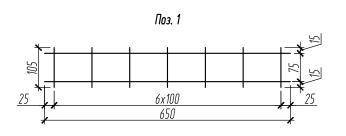
.,								Разме	ры, мм								., -
Марка	а	Ь	d1	d2	l1	12	L	Н	h1	h2	m1	m2	n	R	k1	k2	Масса блока, т
Ф1п.л-20-205	910	1140	650	450	520	1180	2050	1000	500	500	650	450	450	1080	640	360	4,4
Ф1п.л-22-225	1025	1225	650	450	700	1250	2250	1000	500	600	650	380	620	1175	740	360	5,2
Ф1п.л-25-240	1115	1285	550	550	710	1340	2400	1200	600	600	700	450	650	1340	800	400	6,1
Ф1п.л-28-255	1200	1350	650	450	890	1360	2550	1300	700	600	810	480	660	1490	850	550	7,1
Ф1п.л-30-275	1240	1510	650	450	940	1460	2750	1400	800	600	800	480	770	1580	900	600	8,4
Ф2-15-260	780	1040	650	450	450	2150	2600	1000	500	500	580	-	1970	790	640	360	5,1
Ф2-18-290	850	1200	650	450	500	2400	2900	1000	500	500	670	-	2230	975	640	360	5,8
Ф2-20-310	910	1280	650	450	520	2580	3100	1000	500	500	710	-	2390	1080	640	360	6,3
Φ2-22-330	1025	1250	650	450	700	2600	3300	1100	500	600	780	-	2520	1175	740	360	6,8
Φ2-25-360	1115	1370	550	550	700	2890	3600	1200	600	600	840	-	2760	1340	800	400	8,6
Φ2-28-390	1200	1500	650	450	880	3020	3900	1300	700	600	900	-	3000	1490	850	550	10,4
Φ2-30-410	1240	1620	650	450	940	2120	4 100	1400	800	600	900	-	3200	1580	900	600	11,9
Φ3							_										1,4


Г								Количе	ство на	блок Ф	1						Massa
Поз	. Наименование	1п.л-20 -170	1п.л-22 -195	1п.л-25 -205	1п.л-28 -225	1n. <i>n</i> -30 -240	2-10- 260	2-12- 280	2-15- 260	2-18- 290	2-20- 310	2-22- 330	2-25- 360	2-28- 390	2-30- 410	3	Масса ед., кг
1	Строповочная петля ПС-1						2					4				2	2,0
	ПС-2	2						2					4				2,9
	ПС-3		2	2	2	2			2	2	2			4	4		3,8
	Бетон В20, F200-F300, W6, м ³	1,52	1,87	2,20	2,75	3,25	1,87	1,98	2,20	2,53	2,75	2,97	3,74	4,62	5,34	0,59	


1. Монтажные петли изготавливаются из арматурной стали класса А-I по ГОСТ 5781-82 марки Ст3сп по ГОСТ 380-2005. 2. Для блоков Ф2-22-325 и Ф2-25-355 петли сваривать попарно.

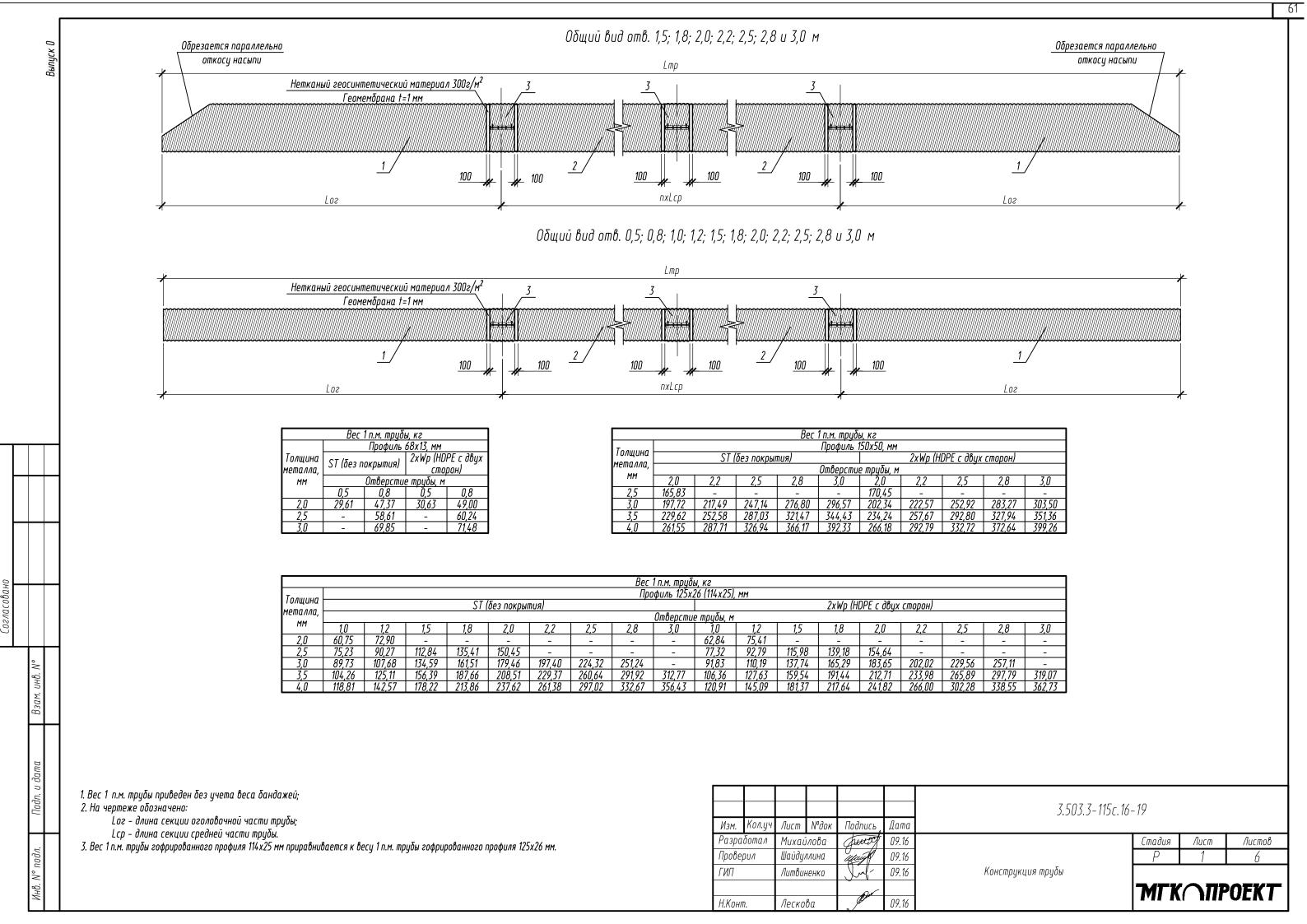
						3.503.3-115c.16	- 16		
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разра	δοπαл	Михай	лова	Juice	09.16		Стадия	Лист	Листов
Провер	DU/I	Шайдул	1ЛИНА	Mary	09.16		Р		1
ГИП		Литвин	ненко	Jul	09.16	Блок бетонный Ф. Гофр 150х50 мм			
Н.Конп	n.	Леско	ва		09.16		MIK		OEK 1




Отв. 2,0 м

Отв. 2,8 м

Спецификация арматуры на блок Л2


Поз.	Наименование	Кол.	Масса, кг	Примечание
	Сетка ГОСТ 23279-85			
1	4 C <u>38p-75</u> 10,5x65	1	0,12	
	Бетон класса ВЗО, F200-F300, W6			0,0051 m³

Спецификация элементов на 1 пог.м трубы

			Количе	ство на	блок Ф		.,
Поз.	Наименование	2,0	2,2	2,5	2,8	3,0	Масса ед., кг
Л1	Блок лотка	20	22	24	27	30	12.3

- 1. Блоки лотка изготавливаются из мелкозернистого бетона, полимербетона или асфальтобетона в соответствии с п.6.8 пояснительной записки. 2. Блоки лотка укладываются по слою битумно-резиновой мастики на предварительно очищенную поверхность трубы. Технология укладки блоков лотка приведена в ВСН 176-78. 3. Армирование блоков производится сеткой по ГОСТ 23279-2012 с ячейкой 100х75 из проволоки диаметром 3 мм класса Вр по ГОСТ 6727-80. 4. Заполнение швов производится цементным раствором М200 или битумно-резиновой мастикой, вслед за укладкой блоков лотка. 5. Для быстрых и (или) агрессивных водотоков толщину лотка необходимо увеличивать при соответствующем обосновании в проекте.

						3.503.3-115c.16	i – 18		
Изм.	Кол.уч	Лист	№док	Подпись	Дата	3.303.3 113.6.10	7.0		
Разрас	δοπαл	Михай	ілова	hursel	09.16		Стадия	Лист	Листов
Провер	ОИЛ	Шайду/	1лина	May	09.16	CZ	Р		1
ГИП		Литвин	ненко	J. m.	09.16	Сборный защитный лоток. Гофр 150x50 мм		-	
				0~ 1		τ σφρ 150λ50 1111	ME	$K \cap \Pi$	POEKT
Н.Конп	٦.	Леско	ва	JE Jun	09.16		""" "		IULNI

Спецификация

																<u>Колич</u>	<u>іеств</u>	<u>ю на</u>	отвеј	остив	-														0.5
103.	Наименование	0,5	2x0,5	3x0,5	0,8	2x0,8	3x0,8	1,0	2x1,0	3x1,0	1,2	2x1,2	3x1,2	1,5	2x1,5	3x1,5	1,8	2x1,8	3x1,8	2,0	2x2,0	3x2,0	2,2	2x2,2	3x2,2	2,5	2x2,5	3x2,5	2,8	2x2,8	3x2,8	3,0	2x3,	0 3x3,0	Обозна чени документо
	1		•		'	'		1	1	'	'	•	' '	Голщи	JHQ Л	иста	2,0 м	М											-		•			-	
1	Секция 2xWP-E5.20.L-3.503.3-115c.16	2	4	6																															
	Секция 2xWP-E8.20.L-3.503.3-115c.16				2	4	6																												
	Секция 2xWP-E10.20.L-3.503.3-115c.16							2	4	6																									
	Секция 2xWP-E12.20.L-3.503.3-115c.16										2	4	6																						
?*	Секция 2xWP-M5.20.L-3.503.3-115c.16	1	2	3																															
	Секция 2xWP-M8.20.L-3.503.3-115c.16				1	2	3																							1					Серия
	Секция 2xWP-M10.20.L-3.503.3-115c.16							1	2	3																									3.503.3-115a
	Секция 2xWP-M12.20.L-3.503.3-115c.16										1	2	3																						
*	Бандаж В1-5.20-3.503.3-115с.16	2	4	6																															
	Бандаж В1-8.20-3.503.3-115с.16				2	4	6																												
	Бандаж В2-10.20-3.503.3-115с.16							2	4	6																									
	Бандаж В2-12.20-3.503.3-115с.16										2	4	6																	1					
	•				•	•		•		•	•	•		Голши	јна л	иста	2.5 m	М	•			•	•					•			•				
1	Секция 2xWP-E8.25.L-3.503.3-115c.16				1 2	4	6																							T					
	Секция 2хWP-E10.25.L-3.503.3-115с.16							2	4	6																									
	Секция 2xWP-E12.25.L-3.503.3-115c.16										2	4	6																						
	Секция 2xWP-E15.25.L-3.503.3-115c.16													2	4	6														1					
	Секция 2xWP-E18.25.L-3.503.3-115c.16																2	4	6																
	Секция 2хWP-E20.25.L-3.503.3-115с.16																			2	4	6								\top					
	Секция 2хWP-lp-E20.25.L-3.503.3-115с.16																			2	4	6													
*	Секция 2xWP-M8.25.L-3.503.3-115c.16				1	2	3															Ť								†					
	Секция 2xWP-M10.25.L-3.503.3-115c.16					<u> </u>		1	2	3																				\top					
	Секция 2xWP-M12.25.L-3.503.3-115c.16							† ·		1	1	2	3																	\dagger					
	Секция 2xWP-M15.25.L-3.503.3-115c.16										†	<u> </u>	Ť	1	2	3														t					
	Секция 2xWP-M18.25.L-3.503.3-115c.16									1							1	2	3											†					
	Секция 2хWР-M20.25.L-3.503.3-115с.16																	_		1	2	3								+	1				
	Секция 2хWP-Ip-M20.25.L-3.503.3-115с.16					1				1										1	2	3								+-	1				
?*	Бандаж В1-8.25-3.503.3-115с.16		\vdash		1 2	4	6				T	t										_								+	+			+	
_	Бандаж В2-10.25-3.503.3-115с.16		t		+-	+	+ -	2	4	6	1	t	1																	+	+	<u> </u>	 	+	_
	Бандаж В2-12.25-3.503.3-115с.16					†	1	 	<u> </u>	Ť	1 2	4	6																	t	+			+	Серия
	Бандаж В2-15.25-3.503.3-115с.16		\vdash	\vdash	1	t	+		1		+-	+ ~	╁	2	4	6														+	+	\vdash		+	3.503.3-115c
	Бандаж В2-18.25-3.503.3-115с.16				+		1	1		+	+	1	1		7	۲	2	4	6											+-	1			+	
	Бандаж В2-20.25-3.503.3-115с.16					1												 		2	4	6								+				+	
	Бандаж ВЗ-20.25-3.503.3-115с.16					1	1				1	1	1							2	4	6							 	+-	1	1	1	+	

^{*}количество элементов приведено при n=1 L- длина секции трубы

1. Спецификация приведена для труб с полимерным покрытием. Для труб с цинковым покрытием количество элементов не меняется. 2. Спецификация элементов на трубы гофрированного профиля 114х25 мм рассчитывается по аналогии труб гофрированного профиля 125х26 мм.

МГК∩ПРОЕКТ

Изм	Коллич	Лист	N₀yok	Подпись	Лата

3.503.3-115c.16-19

Продолжение спецификации

																		Коли	честв	до на	отве,	ocmu	e									,				,	70
73.	Наименование	0,5	2x0	,5 3,	x0,5	0,8	2x0,8	8 3x0,	.8 1,0	7 2x	x1,0 3	3x1,0	1,2	2x1,2	3x1,2	1,5	2x1,5	3x1,5	1,8	2x1,8	3x1,8	2,0	2x2,0	3x2,0	2,2	2x2,2	3x2,2	2,5	2x2,5	3x2,5	2,8	2x2,8	3x2,8	3,0	2x3,0	3x3,0	Обозначен документ
			-						-						•	Голщ	ина л	иста	3,0 m	M	•				'							'					
1	Секция 2xWP-E8.30.L-3.503.3-115c.16					2	4	6																													
	Секция 2хWP-E10.30.L-3.503.3-115с.16								2		4	6																									
	Секция 2хWP-E12.30.L-3.503.3-115с.16												2	4	6																						
	Секция 2xWP-E15.30.L-3.503.3-115c.16															2	4	6																			
	Секция 2хWP-E18.30.L-3.503.3-115с.16																		2	4	6																
	Секция 2xWP-E20.30.L-3.503.3-115c.16																					2	4	6													
	Секция 2xWP-lp-E20.30.L-3.503.3-115c.16																					2	4	6													
	Секция 2хWP-E22.30.L-3.503.3-115с.16																								2	4	6										
	Секция 2xWP-lp-E22.30.L-3.503.3-115c.16																								2	4	6										
	Секция 2хWP-E25.30.L-3.503.3-115с.16																											2	4	6							
	Секция 2хWP-lp-E25.30.L-3.503.3-115с.16																											2	4	6							
	Секция 2хWP-E28.30.L-3.503.3-115с.16											ĺ																			2	4	6				
	Секция 2хWP-lp-E28.30.L-3.503.3-115с.16																														2	4	6				
	Секция 2хWP-lp-E30.30.L-3.503.3-115с.16			T																														2	4	6	
	Секция 2хWP-M8.30.L-3.503.3-115с.16					1	2	3																													
	Секция 2хWP-M10.30.L-3.503.3-115с.16								1		2	3																									
	Секция 2xWP-M12.30.L-3.503.3-115c.16												1	2	3																						
	Секция 2xWP-M15.30.L-3.503.3-115c.16			\top												1	2	3																			
	Секция 2xWP-M18.30.L-3.503.3-115c.16			\top												•			1	2	3																
	Секция 2xWP-M20.30.L-3.503.3-115c.16																					1	2	3													
	Секция 2xWP-lp-M20.30.L-3.503.3-115c.16			T																		1	2														
	Секция 2xWP-M22.30.L-3.503.3-115c.16			T																					1	2	3										
	Секция 2xWP-lp-M22.30.L-3.503.3-115c.16			\top																					1	1 2	3										
	Секция 2xWP-M25.30.L-3.503.3-115c.16			\top																					<u> </u>			1	2	3							Серия
	Секция 2хWP-lp-M25.30.L-3.503.3-115с.16			\top																								1	2								3.503.3-11
	Секция 2xWP-M28.30.L-3.503.3-115c.16		+	\top							\neg																	<u> </u>		<u> </u>	1	1 2	3				
	Секция 2xWP-lp-M28.30.L -3.503.3 -115с.16		+	+				+			\top													 							1	1 2	3				
	Секция 2хWP-lp-M30.30.L-3.503.3-115с.16		+					+			+																				† <i>'</i>	+-	 ´	1	2	3	
	Бандаж В1-8.30-3.503.3-115с.16		+	+		2	4	6			\pm													1								1	<u> </u>			+	
	Бандаж В2-10.30-3.503.3-115с.16		+	+			1	+ "	1 2	+	4	6									 			 								+	 			+	
	Бандаж В2-12.30-3.503.3-115с.16		+	+					+-	+	* 	-	2	4	6																					+	
	Бандаж В2-15.30-3.503.3-115с.16		1	+				+			_			7	"	2	4	6														1	1				
	Бандаж В2-18.30-3.503.3-115с.16	-	+	+				+	+	+	+						+ *	۲	2	4	6		1	†	 	 						+	 		 	+	
	Бандаж В2-20.30-3.503.3-115с.16		+	+				+	-		+								 	7	١,	2	4	6												+	
	Бандаж ВЗ-20.30-3.503.3-115c.16	1	+	+	+			+	-	+	+	\dashv						 		 	 	2		_	 	1	-		-		 	+			1	+	
	Бандаж В2-22.30-3.503.3-115c.16	1	+	+	\dashv			+	-	+	+	\dashv									1	-	+	1 "	2	4	6					+	1		1	+-	
	Бандаж ВЗ-22.30-3.503.3-115c.16		+	+	\dashv			+	+	+	+	\dashv									 	-	+	+	2		6		1			+				+	
	Бандаж B2-25.30-3.503.3-115c.16	-	+	+	-			+	+	+	+	-								 	 		+	+	-	4	"	2	4	6		+	 		-	+-	
	Бандаж ВЗ-25.30-3.503.3-115c.16	1	+	+	\dashv		-	+	-	+	+	-						-		-				-	-			2	4			+	\vdash		1	+-	
_	Бандаж В2-28.30-3.503.3-115c.16		+	+	\dashv			+	-	+	+	\dashv		-				-		-	 	-	+	+	-	-			4	10	2	+ ,	1			+-	
_			+	+	-			+	-	+	+	-									<u> </u>		1	+	<u> </u>	-					2		6		-	+-	
_	Бандаж ВЗ-28.30-3.503.3-115с.16	-	+-	+	\dashv		-	+	-	+	_								-	-	-		1	╂—	-	-	-	-	-	-	2	4	6	2	,	+	
_	Бандаж ВЗ-30.30-3.503.3-115с.16																																	2	4	6	

						Лист	ĺ
					3.503.3-115c.16-19	7	ĺ
Кол.уч	Лист	№док	Подпись	Дата		3	ĺ

^{*}количество элементов приведено при n=1 L- длина секции трубы

^{1.} Спецификация приведена для труб с полимерным покрытием. Для труб с цинковым покрытием количество элементов не меняется. 2. Спецификация элементов на трубы гофрированного профиля 114x25 мм рассчитывается по аналогии труб гофрированного профиля 125x26 мм.

Продолжение спецификации

																	Коли	честв	о на	ombej	pcmue	-														07
7оз.	Наименование	0,5	2x0,	5 3x0,	5 0,8	3 2	x0,8 3x	0,8	1,0	2x1,0	3x1,0	1,2	2x1,.	2 3x1,2	1,5	2x1,5	3x1,5	1,8	2x1,8	3x1,8	2,0	2x2,0	3x2,0	2,2	2x2,2	3x2,2	2,5	2x2,5	3x2,5	2,8	2x2,8	3x2,8	3,0	2x3,l	3x3,0	Обозна чени документа
								_							Толи	ина л	IICMA	3 5 MI	 У									l				1	Ь—	—		
1	Секция 2xWP-E10.35.L-3.503.3-115c.16					Т			2	4	6					1	<u> </u>	<u> </u>	İ																	
	Секция 2хWP-E12.35.L-3.503.3-115с.16											2	4	6																						
	Секция 2xWP-E15.35.L-3.503.3-115c.16														2	4	6																			
	Секция 2xWP-E18.35.L-3.503.3-115c.16																	2	4	6																
	Секция 2хWP-E20.35.L-3.503.3-115с.16					T															2	4	6											1		
	Секция 2xWP-lp-E20.35.L-3.503.3-115c.16					T															2	4	6											1		
	Секция 2xWP-E22.35.L-3.503.3-115c.16					T																		2	4	6								1		
	Секция 2xWP-lp-E22.35.L-3.503.3-115c.16					1																		2	4	6								1		
	Секция 2xWP-E25.35.L-3.503.3-115c.16					1																					2	4	6				1	1		
	Секция 2хWP-lp-E25.35.L-3.503.3-115с.16		1		1	\top			\neg			1			1	1											2	4			T T	1	1	T		
	Секция 2xWP-E28.35.L-3.503.3-115c.16		1			\top			\neg			1	1		t													<u> </u>	٦	2	4	6	†	T		
	Секция 2хWP-lp-E28.35.L-3.503.3-115с.16		1	1	1	\top		\neg				1	†	1	T															2		6	t	T		
	Секция 2xWP-E30.35.L-3.503.3-115c.16		1			\top		\neg	寸			1	1	1	t															<u> </u>		۲Ť	2	4	6	
	Секция 2хWP-lp-E30.35.L-3.503.3-115c.16			+		+								1																			2	1 4	6	
*	Секция 2xWP-M10.35.L-3.503.3-115c.16			+		+			1	2	3			1																			 	<u> </u>	+ *	
	Секция 2хWР-М12.35.L - 3.503.3-115с.16		1	+		+			-		 	1	1 2	3																			_	+-		
	Секция 2хWР-М15.35.L - 3.503.3-115с.16		1	1		+						+ ′	+-	+-	1	1 2	3																-	+-		
	Секция 2хWP-M18.35.L-3.503.3-115с.16		1			+							+	1	- '-	-	 	1	2	3													-	+-		
	Секция 2хWР-M20.35.L-3.503.3-115с.16		\vdash	+		+	_	_				+	+	+		1		+-			1	2	3									+	+-	+-		
	Секция 2xWP-lp-M20.35.L-3.503.3-115c.16		+	+		+		_				1	1	+							1	2	3										+-	+-		
	Секция 2хWP-M22.35.L-3.503.3-115с.16		+	+		+	-	-				+	+	+		-					<u>'</u>		 	1	2	3					 	1	+-	+-		
	Секция 2xWP-lp-M22.35.L-3.503.3-115с.16		1	+		+	-					1	+	+										1	2	3					<u> </u>		+-	+-		
	Секция 2хWP-M25.35.L-3.503.3-115с.16		+	+		+						1	+	+										- '			1	2	3				+-	+-		
	Секция 2xWP-Ip-M25.35.L-3.503.3-115c.16		-			+						1	+	+														2					+-	+-		
	Секция 2хWP-M28.35.L-3.503.3-115с.16					+		-				1	+	+														 	ر ا	1	2	3	+-	+		
	Секция 2xWP-Ip-M28.35.L-3.503.3-115c.16		+-	+		+		_	-			+	+	+		1														1				+-		Серия
	Секция 2хWP-M30.35.L-3.503.3-115c.16		+	+		+	_				_	-	+	+		_														<u>'</u>	 	ر	+	1 2	7	3.503.3-115d
	Секция 2xWP-Ip-M30.35.L-3.503.3-115c.16		-	+		+	-	-				1	+	+																	-		1	2		
7 *	Бандаж В2-10.35-3.503.3-115с.16		+	+		+	-	_	2	4	6	1	+	+																	 		+	+-	ل ا	
	Бандаж В2-12.35-3.503.3-115с.16	-	+	+	+	+	-	-	_	4	10	2	4	+ -		-				_	_			_	\vdash					-	┝	+	+-	+-		
	Бандаж В2-15.35-3.503.3-115с.16		-	+		+		_				+-	+	6	2	4	6														-		+-	+-		
			-	+-	-	+		_				+	+	+	<u> </u>	4	0	2	4												-		+	+		
	Бандаж B2-18.35-3.503.3-115c.16 Бандаж B2-20.35-3.503.3-115c.16		\vdash	-	+	+		_	-		-	+	+-	+	-	-	-	2	4	6	2	,	1	_						-	-	 	+	+-		
			+	+	+	+	-+	-	+			+	+	+	 	1	-	-		-	2	4	6							-	 	 	+	+		
	Бандаж ВЗ-20.35-3.503.3-115с.16	1	+	+-		+	+	-	-		-	-	+	+		-	-	-			2	4	6	<u> </u>	,	\vdash				-	├	-	+-	\vdash		
	Бандаж В2-22.35-3.503.3-115с.16	-	\vdash	+-		+	-		-		-	-	+	+		-	-	-				-		2	4	6				_	\vdash	-	+-	\leftarrow	+	
	Бандаж ВЗ-22.35-3.503.3-115с.16	-	\vdash	+-	_	+	+	_	_			-	+	+		-		_		_		-		2	4	6		,	 	_	\vdash	\vdash	\vdash	\leftarrow	+-	
	Бандаж В2-25.35-3.503.3-115с.16	-	-	_	_	+						-	+-	+								-	-				2	4			-	-	₩	₩		
	Бандаж ВЗ-25.35-3.503.3-115с.16	-	-	_	-	+						-	+	+								-					2	4	6	1	 ,	 	₩	₩	-	
	Бандаж В2-28.35-3.503.3-115с.16	1	1	_	+	+	_	_	_			1	+	+	<u> </u>	1		_			-									2		6	₩	₩	1	
	Бандаж ВЗ-28.35-3.503.3-115с.16	-	_	_		+		_	_		_	-	+	+	1		_	_												2	4	6		↓ ,	\perp	
	Бандаж В2-30.35-3.503.3-115с.16	-	\vdash	_		+						-	+	+		_	_					-			\vdash						├	<u> </u>	2			
	Бандаж ВЗ-30.35-3.503.3-115с.16		1																														2	4	6	

*количество элементов приведено при n=1 L- длина секции трубы

Спецификация приведена для труб с полимерным покрытием. Для труб с цинковым покрытием количество элементов не меняется.

МГК∩ПРОЕКТ

Изм.	Кол.цч	Лист	№док	Подпись	Дата	

3.503.3-115c.16-19

Лист /.

Инв. N° под,

Продолжение спецификации

																Колич	честв	о на	отвер	стие															77
03.	Наименование	0,5	2x0,5	3x0,5	0,8	2x0,8	3x0,8	1,0	2x1,0	3x1,0	1,2	2x1,2	3x1,2	1,5	2x1,5	3x1,5	1,8	2x1,8	3x1,8	2,0	2x2,0	3x2,0	2,2	2x2,2	3x2,2	2,5	2x2,5	3x2,5	2,8	2x2,8	3x2,8	3,0	2x3,0	3x3,0	Обозначен документ
	1						'							Толщи	<i>Іна Л</i> і	иста	4,0 mi	1																	
1	Секция 2xWP-E10.40.L-3.503.3-115c.16							2	4	6																									
	Секция 2хWP-E12.40.L-3.503.3-115с.16										2	4	6																						
	Секция 2xWP-E15.40.L-3.503.3-115c.16													2	4	6																			
	Секция 2xWP-E18.40.L-3.503.3-115c.16																2	4	6																
	Секция 2xWP-E20.40.L-3.503.3-115c.16																			2		6													
	Секция 2xWP-lp-E20.40.L-3.503.3-115c.16																			2	4	6													
	Секция 2xWP-E22.40.L-3.503.3-115c.16																						2												
	Секция 2xWP-lp-E22.40.L-3.503.3-115c.16																						2	4	6										
	Секция 2xWP-E25.40.L-3.503.3-115c.16																									2	4	6							
	Секция 2xWP-lp-E25.40.L-3.503.3-115c.16																									2	4	6							
	Секция 2xWP-E28.40.L-3.503.3-115c.16																												2		6				
	Секция 2xWP-lp-E28.40.L-3.503.3-115c.16	i																											2		6				
	Секция 2xWP-E30.40.L-3.503.3-115c.16																															2	4	6	
	Секция 2xWP-lp-E30.40.L-3.503.3-115c.16																															2	4	6	
*	Секция 2xWP-M10.40.L-3.503.3-115c.16							1	2	3																									
	Секция 2хWP-M12.40.L-3.503.3-115с.16										1	2	3																						
	Секция 2хWP-M15.40.L-3.503.3-115с.16													1	2	3																			
	Секция 2хWP-M18.40.L-3.503.3-115с.16																1	2	3																
	Секция 2xWP-M20.40.L-3.503.3-115c.16																	_		1	2	3													
	Секция 2xWP-lp-M20.40.L-3.503.3-115c.16																			1	2	3													
	Секция 2хWP-M22.40.L-3.503.3-115c.16																						1	2	3										
	Секция 2хWP-lp-M22.40.L-3.503.3-115с.16																						1	2											
	Секция 2xWP-M25.40.L-3.503.3-115c.16																									1	2	3							
	Секция 2хWP-lp-M25.40.L-3.503.3-115с.16	,																								1	2	3							
	Секция 2xWP-M28.40.L-3.503.3-115c.16																										_	<u> </u>	1	2	3	T I			
	Секция 2хWP-lp-M28.40.L-3.503.3-115c.1d																												1		3				Серия
	Секция 2xWP-M30.40.L-3.503.3-115c.16																													+-		1	2	3	3.503.3-115
	Секция 2хWP-Ip-M30.40.L - 3.503.3-115с.16	3																														1		3	
*	Бандаж В2-10.40-3.503.3-115с.16							2	4	6																									
	Бандаж В2-12.40-3.503.3-115с.16							_			2	4	6																					\neg	
	Бандаж В2-15.40-3.503.3-115с.16										_	<u> </u>	Ť	2	4	6																	-	\neg	
	Бандаж В2-18.40-3.503.3-115с.16													_		٦	2	4	6															$\overline{}$	
	Бандаж В2-20.40-3.503.3-115с.16			<u> </u>						-+								-		2	4	6											$\neg \dagger$	\neg	
	Бандаж ВЗ-20.40-3.503.3-115с.16																			2		6											-	\neg	
	Бандаж В2-22.40-3.503.3-115с.16																				,		2	4	6									\neg	
	Бандаж ВЗ-22.40-3.503.3-115с.16	<u> </u>		t						\dashv													2	4	6					1		<u> </u>	\dashv	$\overline{}$	
	Бандаж В2-25.40-3.503.3-115с.16			<u> </u>			-+		\vdash	\dashv															 	2	4	6					\dashv	\neg	
	Бандаж ВЗ-25.40-3.503.3-115с.16			 						\dashv																2	4	6		<u> </u>			\dashv	\dashv	
	Бандаж В2-28.40-3.503.3-115с.16			<u> </u>					+	-+																	+-	۳	2	4	6		-+	-	
	Бандаж ВЗ-28.40-3.503.3-115с.16			 					+	_																			2		6		-+	-	
	Бандаж В2-30.40-3.503.3-115с.16									\rightarrow																			 	+ -	"	2	4	6	
	Бандаж ВЗ-30.40-3.503.3-115с.16			<u> </u>						_																						2	4	6	
_	Danoam DJ JU.TU J.JUJ.J-11JC.10																																7 1	U	

*количество элементов приведено при n=1 L- длина секции трубы

Спецификация приведена для труб с полимерным покрытием. Для труб с цинковым покрытием количество элементов не меняется.

МГК ПРОЕКТ

И	1зм.	Кол.уч	Лист	№док	Подпись	Дата

Расход материалов на один стык

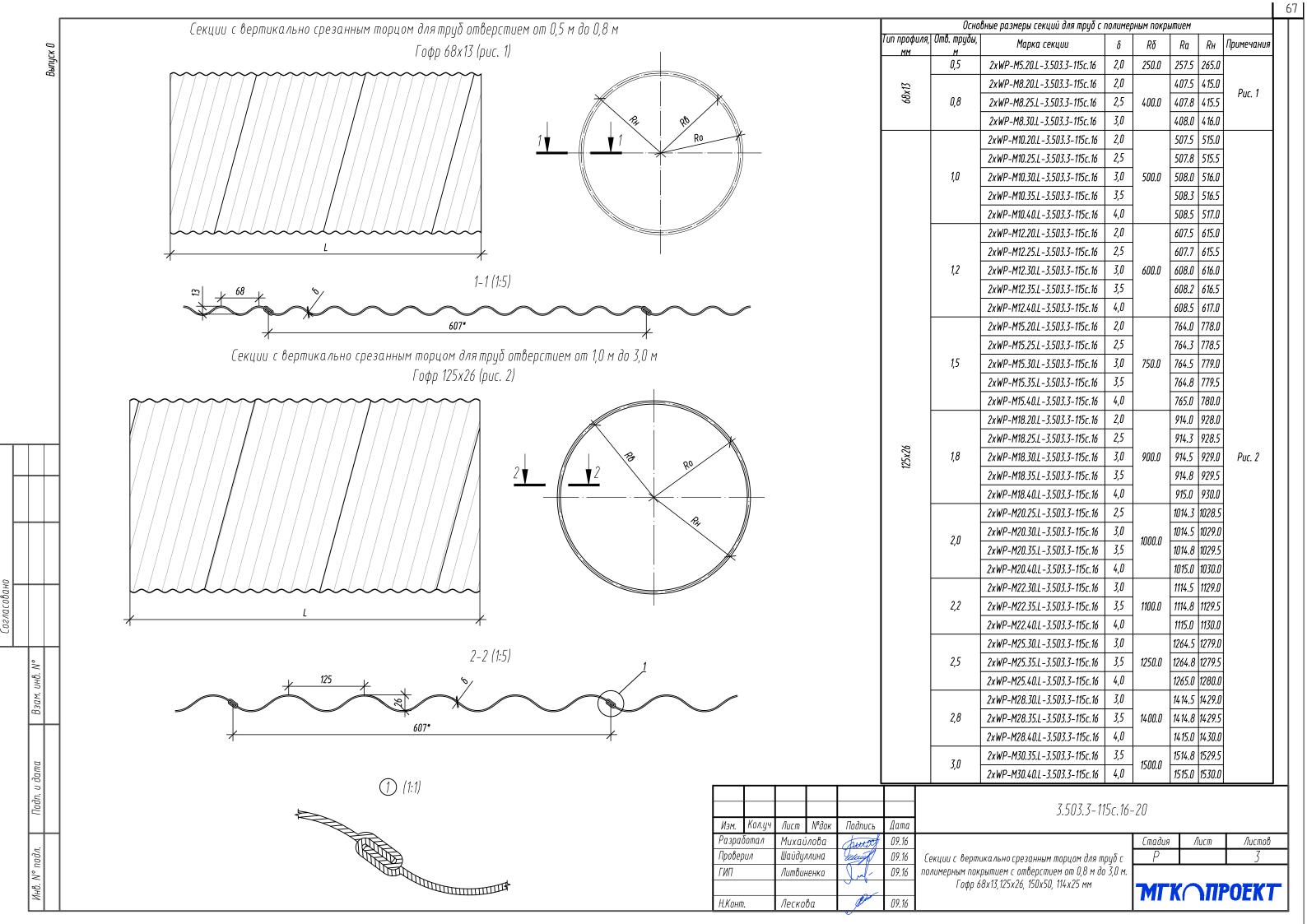
		Пр	оофиль 68х	·13			
			Бандаж				
Толщина металла, мм	Масса металла скреплений, кг	Масса основного металла ST, кг	Масса основного металла 2хWp, кг	Масса бандажа ST, кг	Macca	Нетканый матеруал 300г/м³, м²	Геомембрана t=1мм, м2
2,0		14,8	15,4	20,4	20,9	1,65	1,65
2,0 2,5	5,548	23,6 29,4	24,6 30,2	29,2 34,9	30,1 35,7	2,64	2,64
	металла, мм <u>2,0</u> 2,0	металла, металла скреплений, кг 2,0 2,0 2,5 5,548	Толщина металла, металла основного металла, кг ST, кг 2,0 2,5 5,548 23,6 29,4	Толщина металла скреплений, кг ЯТ, кг 2х Wр, кг 2,0 2,5 3,548 23,6 24,6 29,4 30,2	Толщина металла, мм сса металла скреплений, кг Масса металла 2х Wр, кг СП, кг	Толщина металла, кг хГ, кг хГ	Толщина металла, кг х х х х х х х х х х х х х х х х х х

Профиль 125х25

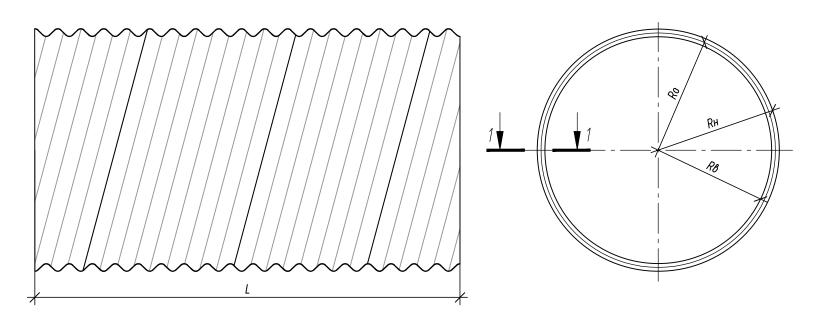
			··P					
	_		I	Бандаж				
Этверстие трубы, м	Толщина металла, мм	Масса металла скреплений,	Масса основного металла	Масса основного металла	Масса бандажа ST, кг	Масса бандажа 2хWp, кг	Геотекстиль 300г/м³, м²	Геомембран t=1мм, м
		кг	ST, кг	2хWр, кг	31, KZ	2x w μ, κ ε 		
	2,0		48,6	50,2	57,4	59,1		
10	2,5	0.007	60,2	61,8	69,0	70,7	/ 71	/ 71
1,0	3,0 3.5	8,806	71,8 83,4	73,4 85,0	80,6 92.2	82,3 93.9	4,71	4,71
	4,0		95,0	96,8	72,2 103,9	105,5		
	2,0		58,4	60,4	67,1	69,1		
	2,5		72,2	74,2	81,0	83,0		
1,2	3,0	8,806	86,2	88,2	95,0	97,0	5,65	5,65
	3,5		100,0	102,2	108,9	110,9		
	4,0		114,0	116,0	122,9	124,9		
	2,5		90,2	92,8	99,1	101,6		
1,5	3,0	8,806	107,6	110,2	116,5	119,0	7,07	7,07
•	3,5 4,0	,	125,2 142,6	127,6 145,2	134,0 151,4	136,4 153,9	·	,
	2.5		108,4	111,4	117,1	120,2		
4.0	3.0	0.004	129,2	132.2	138,0	141.0	0.40	
1,8	3.5	8,806	150.2	153,2	158.9	162.0	8,48	8,48
	4,0		171,0	174,2	179,9	182,9		
	2,5		120,4	123,8	129,2	132,5		
2,0	3,0	8,806	143,6	147,0	152,4	155,7	9,42	9,42
2,0	3,5	0,000	166,8	170,2	175,6	179,0	7,42	7,42
	4,0		190,0	193,4	198,9	202,3		
2.2	3,0	0.00/	158,0 107,7	161,6	166,7	170,4	10.7/	10.7/
2,2	3,5	8,806	183,4 209,2	187,2 212,8	192,3 217,9	196,0 221,6	10,36	10,36
	4,0 3,0		179.4	183,6	188,3	192,5		
2,5	3.5	8,806	208,6	212,8	217.3	221.5	11,78	11,78
2,3	4,0	0,000	237,6	241,8	246,4	250,6	11,70	'',''
	3,0		201,0	205,6	209,8	214,5		
2,8	3,5	8,806	233,6	238,2	242,3	247,0	13,19	13,19
	4,0	ĺ	266,2	270,8	274,9	279,6	,	,
3,0	3,5	8,806	250,2	255,2	259,0	264,1	14,13	14,13
٥,٥	4,0	0,000	285,2	290,2	294,0	299,0	כו,דו	17,13

			Пр	офиль 150х	r50			
				Бандаж				
Отверстие трубы, м	Толщина металла, мм	Масса металла скреплений, кг	Масса основного металла ST, кг	Масса основного металла 2хWp, кг	Масса бандажа ST, кг	Масса бандажа 2хWp, кг	Нетканый материал 300г/м³, м²	Геомембрана t=1мм, м
	2,5		132,6	136,4	141,5	145,2		
2,0	3,0 3,5	8,806	<u>158,2</u> 183,6	161,8 187,4	167,0 192.5	170,7 196,2	9,42	9,42
	4,0		209,2	213,0	218,0	221,8	1	
	3,0		174,0	178,0	182,8	186,9		
2,2	3,5	8,806	202,0	206,2	210,9	214,9	10,36	10,36
	4,0 3,0		230,2 197,8	234,2 202,4	239,0 206,5	243,0 211,1		
2,5	3,5	8,806	229,6	234,2	238,4	243.0	11,78	11,78
	4,0	1 .,	261,6	266,2	270,4	275,0	1	,
	3,0	0.007	221,4	226,6	230,2	235,4	47.40	47.40
2,8	3,5	8,806	257,2	262,4	266,0 701.7	271,2	13,19	13,19
	4,0 3,0		293,0 237,2	298,2 242,8	301,7 246,1	306,9 251,6		
3,0	3,5	8,806	275.6	281.0	284.4	289,9	14,13	14,13
- / -	4,0	1	313,8	319,4	322,7	328,2	1	,

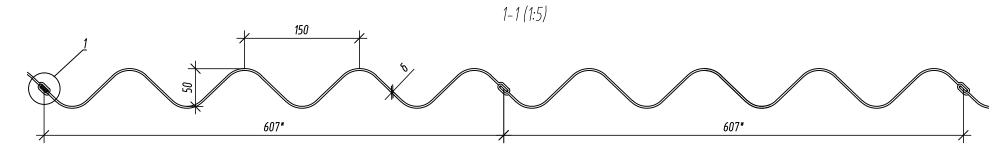
Согласно п. 7.2 режим протекания воды в трубах обычного исполнения принят для труб под автомобильную дорогу при пропуске расчетного расхода - безнапорный режим протекания. Заполнение входного и выходного сечений спиральновитой металлической гофрированной трубы при расчетном расходе и безнапорном режиме должно быть не более 0,9 от высоты СВМГТ.

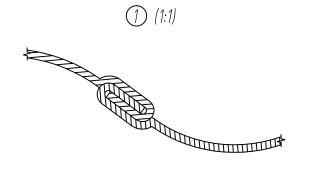

Согласно п. 7.3 под бандажное соединение спиральновитой металлической гофрированной трубы необходимо укладывать нетканое геосинтетическое полотно (300 г/м2).

Дополнительные слои под бандажным соединением назначаются исходя из гидрологических особенностей водотоков:


- для малых расчетных (максимальных) расходов водотока, временных водотоках (перепусках), при наполнении спиральновитой металлической гофрированной трубы менее 0,5D в качестве конструктивного слоя под бандажное соединение предусматривается один слой из нетканого геосинтетического материала с плотностью 300 г/м2;
- для больших расчетных (максимальных) расходов водотока, действующих водотоках, при наполнении СВМГТ более 0,5D качестве конструктивного слоя под бандажное соединение предусматривается устройство двух слоев: геомембрана 1,0 мм и нетканый геосинтетический материал с плотностью 300 г/м2.

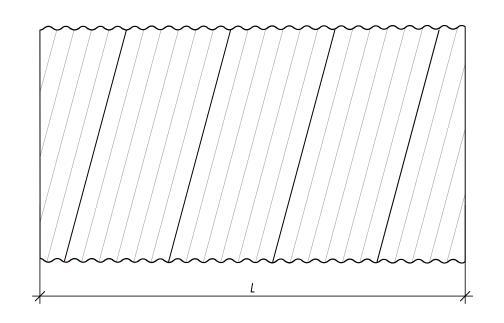
МГК∩ПРОЕКТ

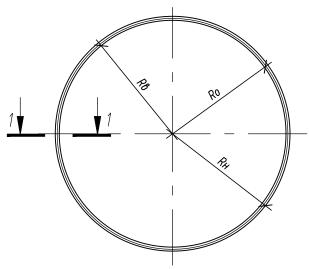

Изм.	Кол.уч	Лист	№док	Подпись	Дата

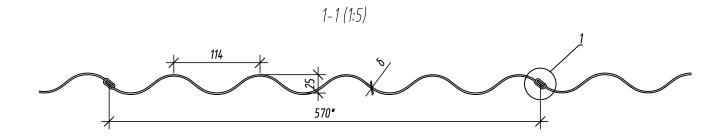


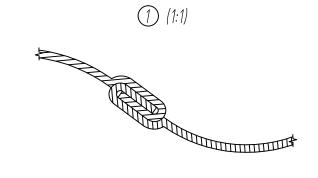
Секции с вертикально срезанным торцом для труб отверстием от 2,0 м до 3,0 м Гофр 150x50 (рис. 3)

Основные размеры секций для труб с полимерным покрытием								
Тип профиля, мм	Отв. трубы, м	Марка секции	δ	Rδ	Ra	Rн	Примечания	
		2xWP-lp-M20.25.L-3.503.3-115c.16	2,5		1026.3	1052.5		
	2,0	2xWP-lp-M20.30.L-3.503.3-115c.16	3,0	1000.0	1026.5	1053.0		
	2,0	2xWP-lp-M20.35.L-3.503.3-115c.16	3,5	1000.0	1026.8	1053.5		
		2xWP-lp-M20.40.L-3.503.3-115c.16	4,0		1027.0	1054.0		
		2xWP-lp-M22.30.L-3.503.3-115c.16	3,0		1126.5	1153.0		
	2,2	2xWP-lp-M22.35.L-3.503.3-115c.16	3,5	1100.0	1126.8	1153.5		
_		2xWP-lp-M22.40.L-3.503.3-115c.16	4,0		1127.0	1154.0		
150×50		2xWP-lp-M25.30.L-3.503.3-115c.16	3,0		1276.5	1303.0	Puc. 3	
1	2,5	2xWP-lp-M25.35.L-3.503.3-115c.16	3,5	1250.0	1276.8	1303.5		
		2xWP-lp-M25.40.L-3.503.3-115c.16	4,0		1277.0	1304.0		
		2xWP-lp-M28.30.L-3.503.3-115c.16	3,0		1426.5	1453.0		
	2,8	2xWP-lp-M28.35.L-3.503.3-115c.16	3,5	1400.0	1426.8	1453.5		
		2xWP-lp-M28.40.L-3.503.3-115c.16	4,0		1427.0	1454.0		
	7.0	2xWP-lp-M30.35.L-3.503.3-115c.16	3,5	1E00.0	1526.8	1553.5		
	3,0	2xWP-lp-M30.40.L-3.503.3-115c.16	4,0	1500.0	1527.0	1554.0		



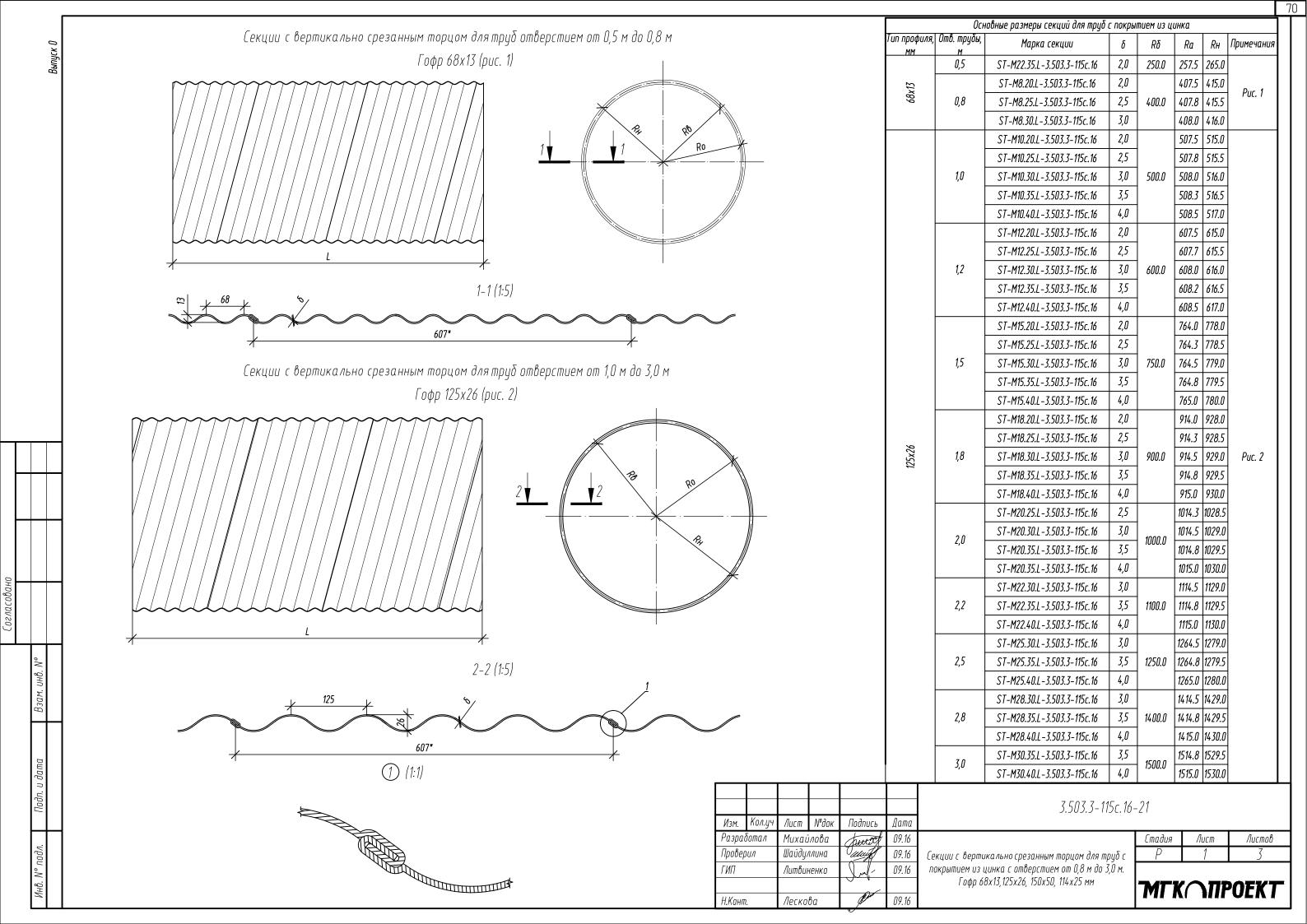

Применение спиральновитых металлических гофрированных труб 150х50 мм, диаметром от 2,2 до 3,0 м с вертикально срезанным торцом в оголовочных секциях допускаются при обосновании в проектной документации.


МГК ПРОЕКТ

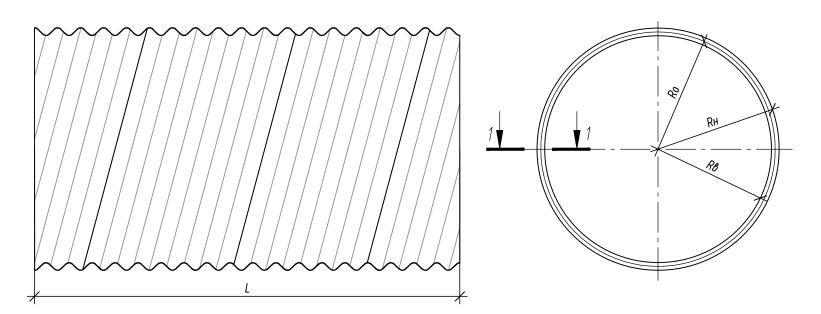

Изм.	Кол.уч	Nucm	№док	Подпись	Дата

Секции с вертикально срезанным торцом для труб отверстием от 1,0 м до 3,0 м Гофр 114x25 (рис. 4)

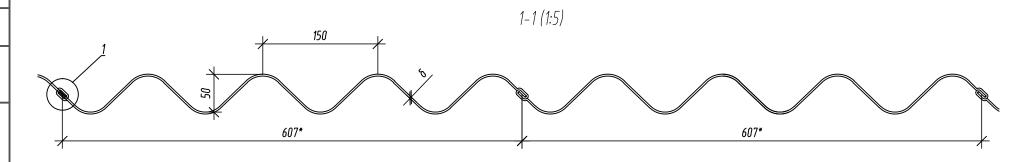
Tun nachusa		вные размеры секций для труб с і	Гилитер	лным пикр <u>ь</u> Г	amuem T	l	
^Г ип профиля, мм	Отв. трубы, м	Марка секции	δ	Rδ	Ra	Rн	Примечания
	,,	2xWP-sp-M10.20.L-3.503.3-115c.16	2,0		513.5	527.0	
		2xWP-sp-M10.25.L-3.503.3-115c.16	2,5		513.8	527.5	
	1,0	2xWP-sp-M10.30.L-3.503.3-115c.16	3,0	500.0	514.0	528.0	
		2xWP-sp-M10.35.L-3.503.3-115c.16	3,5		514.3	528.5	
		2xWP-sp-M10.40.L-3.503.3-115c.16	4,0		514.5	529.0	
	1,2	2xWP-sp-M12.20.L-3.503.3-115c.16	2,0	600.0	613.5	627.0	
		2xWP-sp-M12.25.L-3.503.3-115c.16	2,5		613.7	627.5	
		2xWP-sp-M12.30.L-3.503.3-115c.16	3,0		614.0	628.0	
		2xWP-sp-M12.35.L-3.503.3-115c.16	3,5		614.2	628.5	
		2xWP-sp-M12.40.L-3.503.3-115c.16	4,0		614.5	629.0	
		2xWP-sp-M15.20.L-3.503.3-115c.16	2,0	750.0	763.5	777.0	
		2xWP-sp-M15.25.L-3.503.3-115c.16	2,5		763.8	777.5	
	1,5	2xWP-sp-M15.30.L-3.503.3-115c.16	3,0		764.0	778.0	
		2xWP-sp-M15.35.L-3.503.3-115c.16	3,5		764.3	778.5	
		2xWP-sp-M15.40.L-3.503.3-115c.16	4,0		764.5	779.0	
	1,8	2xWP-sp-M18.20.L-3.503.3-115c.16	2,0	900.0	913.5	927.0	
		2xWP-sp-M18.25.L-3.503.3-115c.16	2,5		913.8	927.5	
114x25		2xWP-sp-M18.30.L-3.503.3-115c.16	3,0		914.0	928.0	
4		2xWP-sp-M18.35.L-3.503.3-115c.16	3,5		914.3	928.5	
		2xWP-sp-M18.40.L-3.503.3-115c.16	4,0		914.5	929.0	
	2,0	2xWP-sp-M20.25.L-3.503.3-115c.16	2,5	1000.0	1013.8	1027.5	
		2xWP-sp-M20.30.L-3.503.3-115c.16	3,0		1014.0	1028.0	
		2xWP-sp-M20.35.L-3.503.3-115c.16	3,5		1014.3	1028.5	
		2xWP-sp-M20.35.L-3.503.3-115c.16	4,0		1014.5	1029.0	
	2,2	2xWP-sp-M22.30.L-3.503.3-115c.16	3,0	1100.0	1114.0	1128.0	
		2xWP-sp-M22.35.L-3.503.3-115c.16	3,5		1114.3	1128.5	
		2xWP-sp-M22.40.L-3.503.3-115c.16	4,0		1114.5	1129.0	
	2,5	2xWP-sp-M25.30.L-3.503.3-115c.16	3,0	1250.0	1264.0	1278.0	
		2xWP-sp-M25.35.L-3.503.3-115c.16	3,5		1264.3	1278.5	
		2xWP-sp-M25.40.L-3.503.3-115c.16	4,0		1264.5	1279.0	
	2,8	2xWP-sp-M28.30.L-3.503.3-115c.16	3,0		1414.0	1428.0	
		2xWP-sp-M28.35.L-3.503.3-115c.16	3,5	1400.0	1414.3	1428.5	
		2xWP-sp-M28.40.L-3.503.3-115c.16	4,0		1414.5	1429.0	
	3,0	2xWP-sp-M30.35.L-3.503.3-115c.16	3,5	1500.0	1514.3	1528.5	
		2xWP-sp-M30.40.L-3.503.3-115c.16	4,0	1500.0	1514.5	1529.0	


Применение спиральновитых металлических гофрированных труб 125x26, 114x25 мм, диаметром от 1,8 до 3,0 м с вертикально срезанным торцом в оголовочных секциях допускаются при обосновании в проектной документации.

	1/		1.00		
Изм	Кол.цч	/lurm	Nº∂nĸ	Пидпись	Дата


МГКОПРОЕКТ

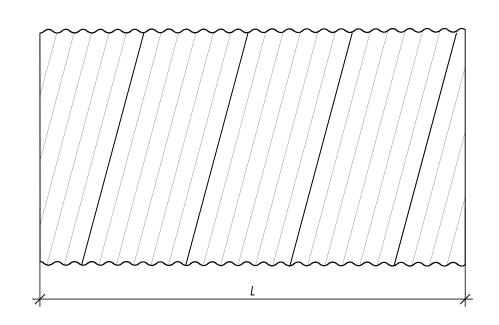
3.503.3-115c.16-20

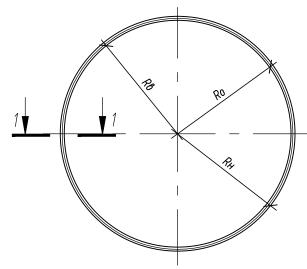

Nucm 3

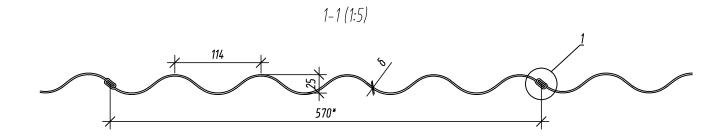
Секции с вертикально срезанным торцом для труб отверстием от 2,0 м до 3,0 м Гофр 150x50 (рис. 3)

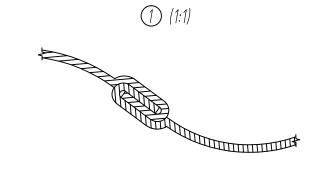
	Основные размеры секций для труб с покрытием из цинка											
ип профиля, мм	Отв. трубы, м	Марка секции	δ	Rδ	Ra	Rн	Примечания					
		ST-lp-M20.25.L-3.503.3-115c.16	2,5		1026.3	1052.5						
	2.0	ST-lp-M20.30.L-3.503.3-115c.16	3,0	1000 0	1026.5	1053.0						
	2,0	ST-lp-M20.35.L-3.503.3-115c.16	3,5	1000.0	1026.8	1053.5						
		ST-lp-M20.40.L-3.503.3-115c.16	4,0		1027.0	1054.0						
		ST-lp-M22.30.L-3.503.3-115c.16	3,0	1100.0	1126.5	1153.0	Puc. 3					
	2,2	ST-lp-M22.35.L-3.503.3-115c.16	3,5		1126.8	1153.5						
_		ST-lp-M22.40.L-3.503.3-115c.16	4,0		1127.0	1154.0						
150x50		ST-lp-M25.30.L-3.503.3-115c.16	3,0		1276.5	1303.0						
1	2,5	ST-lp-M25.35.L-3.503.3-115c.16	3,5	1250.0	1276.8	1303.5						
		ST-lp-M25.40.L-3.503.3-115c.16	4,0		1277.0	1304.0						
		ST-lp-M28.30.L-3.503.3-115c.16	3,0		1426.5	1453.0						
	2,8	ST-lp-M28.35.L-3.503.3-115c.16	3,5	1400.0	1426.8	1453.5						
		ST-lp-M28.40.L-3.503.3-115c.16	4,0	1	1427.0	1454.0						
	7.0	ST-lp-M30.35.L-3.503.3-115c.16	3,5	4500.6	1526.8	1553.5						
	3,0	ST-lp-M30.40.L-3.503.3-115c.16	4,0	1500.0	1527.0	1554.0						

(1) (1:1)


Применение спиральновитых металлических гофрированных труб 150x50 мм, диаметром от 2,2 до 3,0 м с вертикально срезанным торцом в оголовочных секциях допускаются при обосновании в проектной документации.


MCK \(\text{IIPOEKT}\)

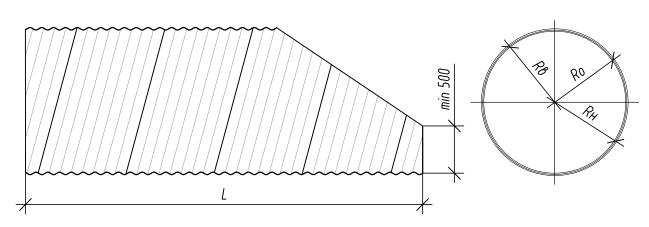

Изм.	Кол.уч	Nucm	№док	Подпись	Дата


3.503.3-	115c.	16-	.21
2.202.2	1150.	, 0	_ '

Секции с вертикально срезанным торцом для труб отверстием от 1,0 м до 3,0 м Гофр 114х25 (рис. 4)

Тип профиля,	Отв. трубы,	Марка секции	ء	DΣ	D-	D	Примечания
мм	М	·	δ	Rδ	Ra	RH	примечини
		ST-sp-M10.20.L-3.503.3-115c.16	2,0		513.5	527.0	
	40	ST-sp-M10.25.L-3.503.3-115c.16	2,5		513.8	527.5	
	1,0	ST-sp-M10.30.L-3.503.3-115c.16	3,0	500.0		528.0	
		ST-sp-M10.35.L-3.503.3-115c.16	3,5			528.5	
		ST-sp-M10.40.L-3.503.3-115c.16	4,0		514.5	529.0	
		ST-sp-M12.20.L-3.503.3-115c.16	2,0		613.5	627.0	
		ST-sp-M12.25.L-3.503.3-115c.16	2,5		613.7	627.5	
	1,2	ST-sp-M12.30.L-3.503.3-115c.16	3,0	600.0		628.0	
		ST-sp-M12.35.L-3.503.3-115c.16	3,5		614.2	628.5	
		ST-sp-M12.40.L-3.503.3-115c.16	4,0		614.5	629.0	
		ST-sp-M15.20.L-3.503.3-115c.16	2,0		763.5	777.0	
		ST-sp-M15.25.L-3.503.3-115c.16	2,5		763.8	777.5	
	1,5	ST-sp-M15.30.L-3.503.3-115c.16	3,0	750.0	764.0	778.0	
		ST-sp-M15.35.L-3.503.3-115c.16	3,5		764.3	778.5	
		ST-sp-M15.40.L-3.503.3-115c.16	4,0		764.5	779.0	
		ST-sp-M18.20.L-3.503.3-115c.16	2,0	900.0	913.5	927.0	
	1,8	ST-sp-M18.25.L-3.503.3-115c.16	2,5		913.8	927.5	
114x25		ST-sp-M18.30.L-3.503.3-115c.16	3,0		914.0	928.0	
11		ST-sp-M18.35.L-3.503.3-115c.16	3,5		914.3	928.5	
		ST-sp-M18.40.L-3.503.3-115c.16	4,0		914.5	929.0	
		ST-sp-M20.25.L-3.503.3-115c.16	2,5		1013.8	1027.5	
		ST-sp-M20.30.L-3.503.3-115c.16	3,0		1014.0	1028.0	
	2,0	ST-sp-M20.35.L-3.503.3-115c.16	3,5	1000.0	1014.3	1028.5	
		ST-sp-M20.35.L-3.503.3-115c.16	4,0		1014.5	1029.0	
		ST-sp-M22.30.L-3.503.3-115c.16	3,0		1114.0	1128.0	
	2,2	ST-sp-M22.35.L-3.503.3-115c.16	3,5	1100.0	1114.3	1128.5	
		ST-sp-M22.40.L-3.503.3-115c.16	4,0		1114.5	1129.0	
		ST-sp-M25.30.L-3.503.3-115c.16	3,0		1264.0	1278.0	
	2,5	ST-sp-M25.35.L-3.503.3-115c.16	3,5	1250.0	1264.3		-
	·	ST-sp-M25.40.L-3.503.3-115c.16	4,0		1264.5		
		ST-sp-M28.30.L-3.503.3-115c.16	3,0		1414.0		
	2,8	ST-sp-M28.35.L-3.503.3-115c.16	3,5	1400.0	1414.3		
	,	ST-sp-M28.40.L-3.503.3-115c.16	4,0		1414.5		
		ST-sp-M30.35.L-3.503.3-115c.16	3,5		1514.3		
	3,0	ST-sp-M30.40.L-3.503.3-115c.16	4,0	1500.0	1514.5		

Применение спиральновитых металлических гофрированных труб 125x26, 114x25 мм, диаметром от 1,8 до 3,0 м с вертикально срезанным торцом в оголовочных секциях допускаются при обосновании в проектной документации.


		ТМГК∩ПРОЕ І	KT
			Лист
		3.503.3-115c.16-21	7

0		
Согласовано		
	Взам. инв. №	
	Подп. и дата	
	дл.	

	0ci	новные размеры секций для тру	б с покрі	ытием из цині	ка	
Тип профиля, мм	Отв. трубы, м	Марка секции	δ	Rδ	Ra	Rн
		ST-E5.20.L-3.503.3-115c.16	2,0		764.0	778.0
		ST-E15.25.L-3.503.3-115c.16	2,5		764.3	778.5
	1,5	ST-E15.30.L-3.503.3-115c.16	3,0	750.0	764.5	779.0
		ST-E15.35.L-3.503.3-115c.16	3,5		764.8	779.5
		ST-E15.40.L-3.503.3-115c.16	4,0		765.0	780.0
		ST-E18.20.L-3.503.3-115c.16	2,0		914.0	928.0
		ST-E18.25.L-3.503.3-115c.16	2,5		914.3	928.5
	1,8	ST-E18.30.L-3.503.3-115c.16	3,0	900.0	914.5	929.0
		ST-E18.35.L-3.503.3-115c.16	3,5		914.8	929.5
		ST-E18.40.L-3.503.3-115c.16	4,0		915.0	930.0
	2,0	ST-E20.25.L-3.503.3-115c.16	2,5	- 1000.0	1014.3	1028.5
,x25		ST-E20.30.L-3.503.3-115c.16	3,0		1014.5	1029.0
125x26, 114x25		ST-E20.35.L-3.503.3-115c.16	3,5		1014.8	1029.5
125xí		ST-E20.35.L-3.503.3-115c.16	4,0		1015.0	1030.0
		ST-E22.30.L-3.503.3-115c.16	3,0		1114.5	1129.0
	2,2	ST-E22.35.L-3.503.3-115c.16	3,5	1100.0	1114.8	1129.5
		ST-E22.40.L-3.503.3-115c.16	4,0		1115.0	1130.0
		ST-E25.30.L-3.503.3-115c.16	3,0		1264.5	1279.0
	2,5	ST-E25.35.L-3.503.3-115c.16	3,5	1250.0	1264.8	1279.5
		ST-E25.40.L-3.503.3-115c.16	4,0		1265.0	1280.0
		ST-E28.30.L-3.503.3-115c.16	3,0		1414.5	1429.0
	2,8	ST-E28.35.L-3.503.3-115c.16	3,5	1400.0	1414.8	1429.5
	Ī	ST-E28.40.L-3.503.3-115c.16	4,0		14 15.0	1430.0
	7.0	ST-E30.35.L-3.503.3-115c.16	3,5	1F00 0	1514.8	1529.5
	3,0	ST-E30.40.L-3.503.3-115c.16	4,0	1500.0	1515.0	1530.0

Основные размеры секций для труб с полимерным покрытием								
Тип профиля, мм	Отв. трубы, м	Марка секции	δ	Rδ	Ra	Rн		
		2xWP-E15.20.L-3.503.3-115c.16	2,0		764.0	778.0		
		2xWP-E15.25.L-3.503.3-115c.16	2,5		764.3	778.5		
	1,5	2xWP-E15.30.L-3.503.3-115c.16	3,0	750.0	764.5	779.0		
		2xWP-E15.35.L-3.503.3-115c.16	3,5		764.8	779.5		
		2xWP-E15.40.L-3.503.3-115c.16	4,0		765.0	780.0		
		2xWP-E18.20.L-3.503.3-115c.16	2,0		914.0	928.0		
		2xWP-E18.25.L-3.503.3-115c.16	2,5		914.3	928.5		
	1,8	2xWP-E18.30.L-3.503.3-115c.16	3,0	900.0	914.5	929.0		
		2xWP-E18.35.L-3.503.3-115c.16	3,5		914.8	929.5		
		2xWP-E18.40.L-3.503.3-115c.16	4,0		915.0	930.0		
	2,0	2xWP-E20.25.L-3.503.3-115c.16	2,5	- 1000.0	1014.3	1028.5		
4x25		2xWP-E20.30.L-3.503.3-115c.16	3,0		1014.5	1029.0		
125x26, 114x25		2xWP-E20.35.L-3.503.3-115c.16	3,5		1014.8	1029.5		
125x.		2xWP-E20.40.L-3.503.3-115c.16	4,0		1015.0	1030.0		
		2xWP-E22.30.L-3.503.3-115c.16	3,0		1114.5	1129.0		
	2,2	2xWP-E22.35.L-3.503.3-115c.16	3,5	1100.0	1114.8	1129.5		
		2xWP-E22.40.L-3.503.3-115c.16	4,0		1115.0	1130.0		
		2xWP-E25.30.L-3.503.3-115c.16	3,0		1264.5	1279.0		
	2,5	2xWP-E25.35.L-3.503.3-115c.16	3,5	1250.0	1264.8	1279.5		
		2xWP-E25.40.L-3.503.3-115c.16	4,0		1265.0	1280.0		
		2xWP-E28.30.L-3.503.3-115c.16	3,0		1414.5	1429.0		
	2,8	2xWP-E28.35.L-3.503.3-115c.16	3,5	1400.0	1414.8	1429.5		
		2xWP-E28.40.L-3.503.3-115c.16	4,0		14 15.0	1430.0		
	3,0	2xWP-E30.35.L-3.503.3-115c.16	3,5	1500.0	1514.8	1529.5		
	J,U	2xWP-E30.40.L-3.503.3-115c.16	4,0	ט.טטכו	1515.0	1530.0		

Секции со срезанным торцом для труб отверстием от 1,5 м до 3,0 м

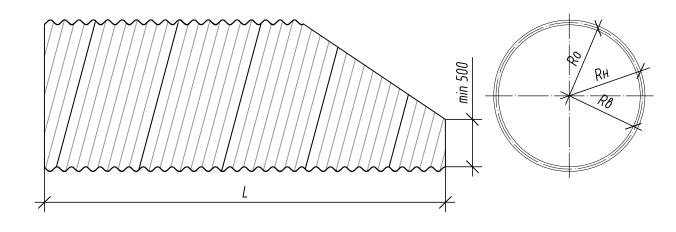
Конструкция замковых элементов приведена в документе -21

Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разрад	ботал	Михай	ілова	hursel	09.16	
Провер	IUΛ	Шайдул	1ЛИНА	Mary	09.16	
ГИП		Литвин	ненко	Jul	09.16	l .
Н.Конт		Леско	ва	JE No.	09.16	

3.503.3-115c.16-22

Секции со срезанным торцом для труб с отверстием от 1,5 до 3,0 м. Гофр 125x26, 114x25 мм

Стадия	Лист	Листов
Р		1



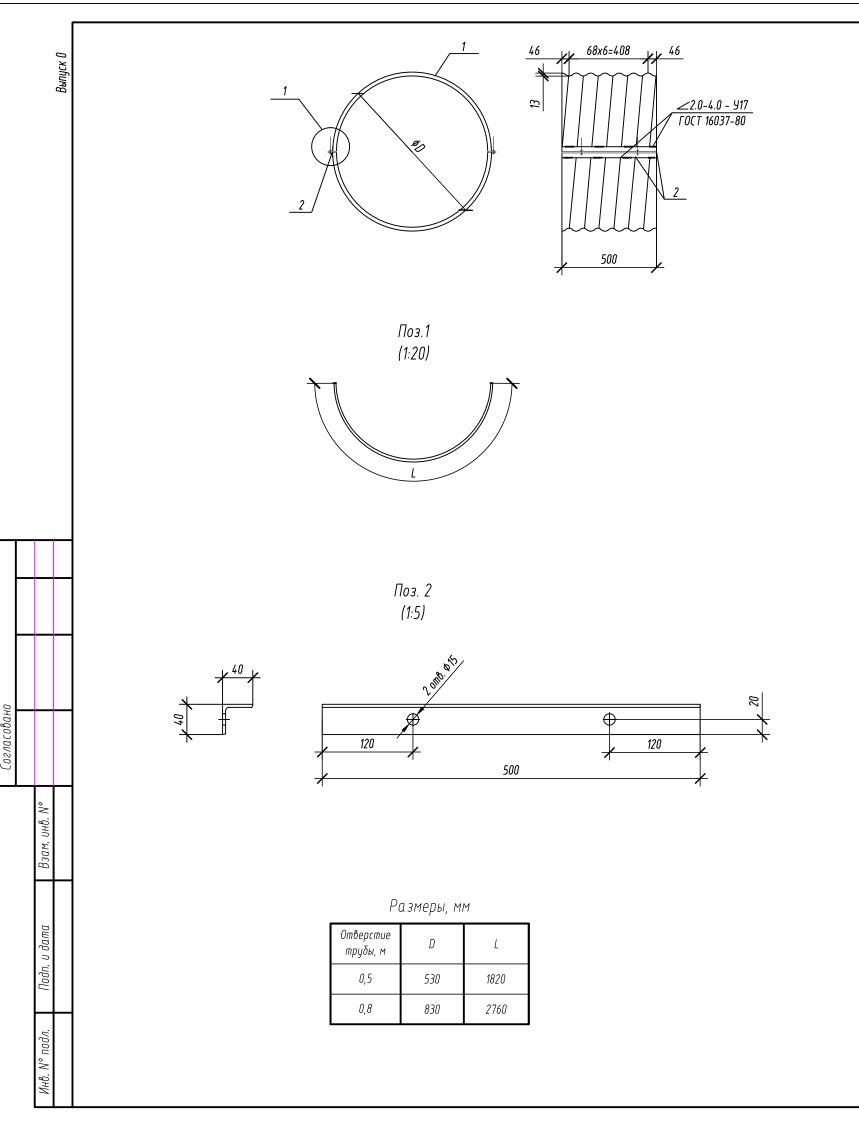
_	_		
0			
с огласорано			
		Взам. инв. N°	
		п. и дата	

	00	сновные размеры секций для труб	с покрі	ытием из цині	ка	
Гип профиля, мм	Отв. трубы, м	Марка секции	δ	Rв	Ro	Rн
		2xWP-lp-E20.25.L-3.503.3-115c.16	2,5		1026.3	1052.5
	2,0	2xWP-lp-E20.30.L-3.503.3-115c.16	3,0	1000.0	1026.5	1053.0
	2,0	2xWP-lp-E20.35.L-3.503.3-115c.16	3,5	1000.0	1026.8	1053.5
		2xWP-lp-E20.40.L-3.503.3-115c.16	4,0		1027.0	1054.0
	2,2	2xWP-lp-E22.30.L-3.503.3-115c.16	3,0	1100.0	1126.5	1153.0
		2xWP-lp-E22.35.L-3.503.3-115c.16	3,5		1126.8	1153.5
1		2xWP-lp-E22.40.L-3.503.3-115c.16	4,0		1127.0	1154.0
150×50		2xWP-lp-E25.30.L-3.503.3-115c.16	3,0	1250.0	1276.5	1303.0
7	2,5	2xWP-lp-E25.35.L-3.503.3-115c.16	3,5		1276.8	1303.5
		2xWP-lp-E25.40.L-3.503.3-115c.16	4,0		1277.0	1304.0
		2xWP-lp-E28.30.L-3.503.3-115c.16	3,0		14 <i>26</i> .5	1453.0
	2,8	2xWP-lp-E28.35.L-3.503.3-115c.16	3,5	1400.0	1426.8	1453.5
		2xWP-lp-E28.40.L-3.503.3-115c.16	4,0		1427.0	1454.0
	3,0	2xWP-lp-E30.35.L-3.503.3-115c.16	3,5	1500.0	1526.8	1553.5
	ט,כ	2xWP-lp-E30.40.L-3.503.3-115c.16	4,0		1527.0	1554.0

Тип профиля, мм	Отв. трубы, м	Марка секции	δ	Rв	Ro	Rн
	,,	ST-lp-E20.25.L-3.503.3-115c.16	2,5		1026.3	1052.5
	2,0	ST-lp-E20.30.L-3.503.3-115c.16	3,0	1000 0	1026.5	1053.0
	2,0	ST-lp-E20.35.L-3.503.3-115c.16	3,5	1000.0	1026.8	1053.5
		ST-lp-E20.40.L-3.503.3-115c.16	4,0		1027.0	1054.0
		ST-lp-E22.30.L-3.503.3-115c.16	3,0		1126.5	1153.0
	2,2	ST-lp-E22.35.L-3.503.3-115c.16	3,5	1100.0	1126.8	1153.5
-		ST-lp-E22.40.L-3.503.3-115c.16	4,0		1127.0	1154.0
150×50		ST-lp-E25.30.L-3.503.3-115c.16	3,0		1276.5	1303.0
7	2,5	ST-lp-E25.35.L-3.503.3-115c.16	3,5	1250.0	1276.8	1303.5
		ST-lp-E25.40.L-3.503.3-115c.16	4,0		1277.0	1304.0
		ST-lp-E28.30.L-3.503.3-115c.16	3,0		1426.5	1453.0
	2,8	ST-lp-E28.35.L-3.503.3-115c.16	3,5	1400.0	1426.8	1453.5
		ST-lp-E28.40.L-3.503.3-115c.16	4,0		1427.0	1454.0
	3,0	ST-lp-E30.35.L-3.503.3-115c.16	3,5	1500.0	1526.8	1553.5
] ,,0	ST-lp-E30.40.L-3.503.3-115c.16	4,0	ט.טטכו	1527.0	1554.0

Секции со срезанным торцом для труб отверстием от 2,0 м до 3,0 м

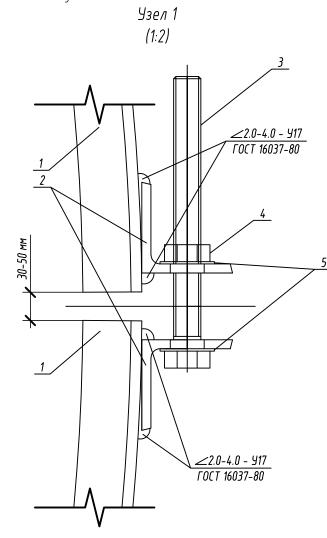
Конструкция замковых элементов приведена в документе –20

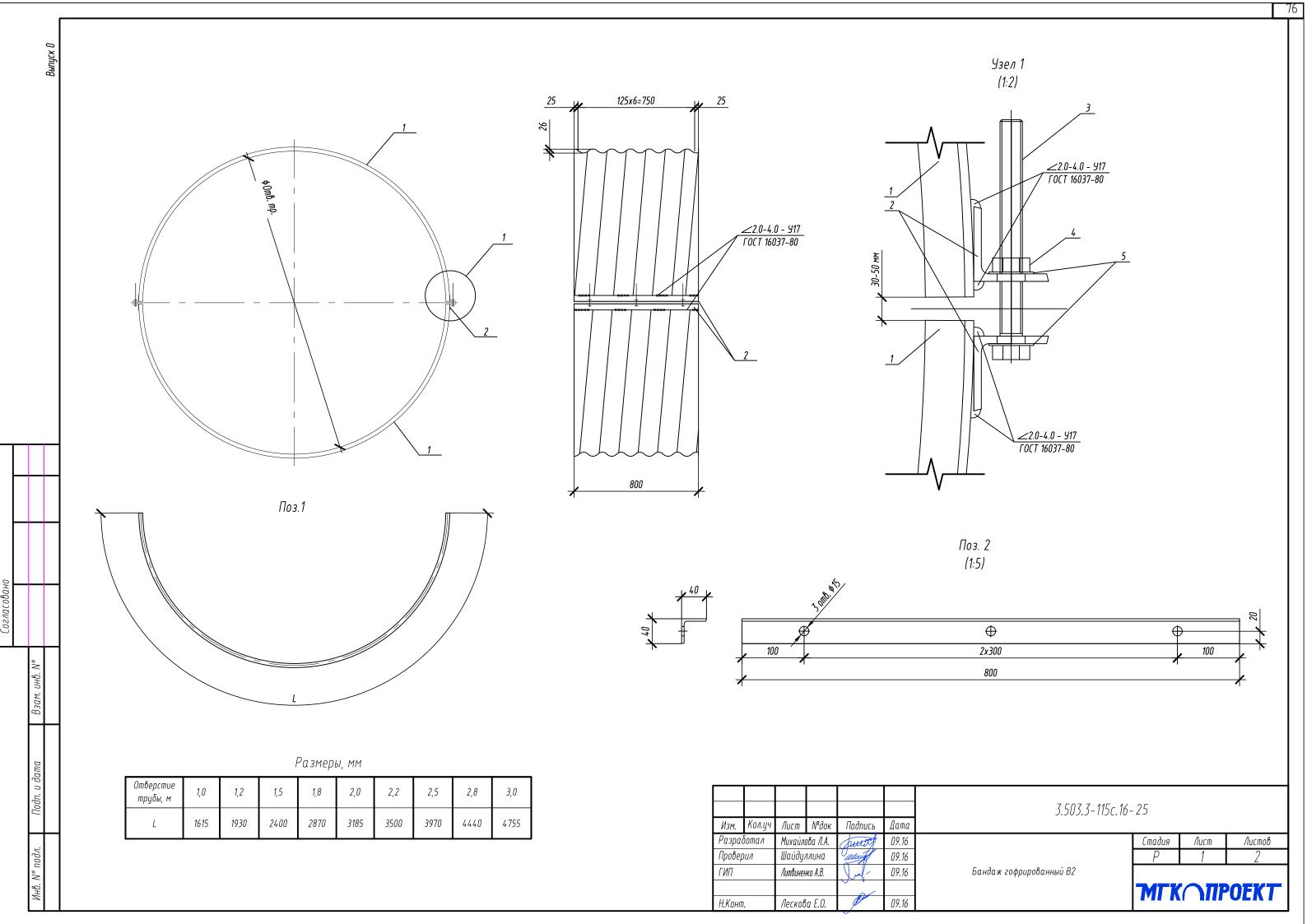

Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разрад	<i>Ботал</i>	Михай	ілова	hursel	09.16	
Провер	υЛ	Шайдул	1ЛИНА	Mary	09.16	l Ce
ГИП		Литвин	ненко	Jul	09.16	LE
Н.Конт		Леско	ва	JE Jan	09.16	

3.503.3-115c.16-23

Секции со срезанным торцом длятруб с отверстием от 2,0 м до 3,0 м. Гофр 150x50 мм

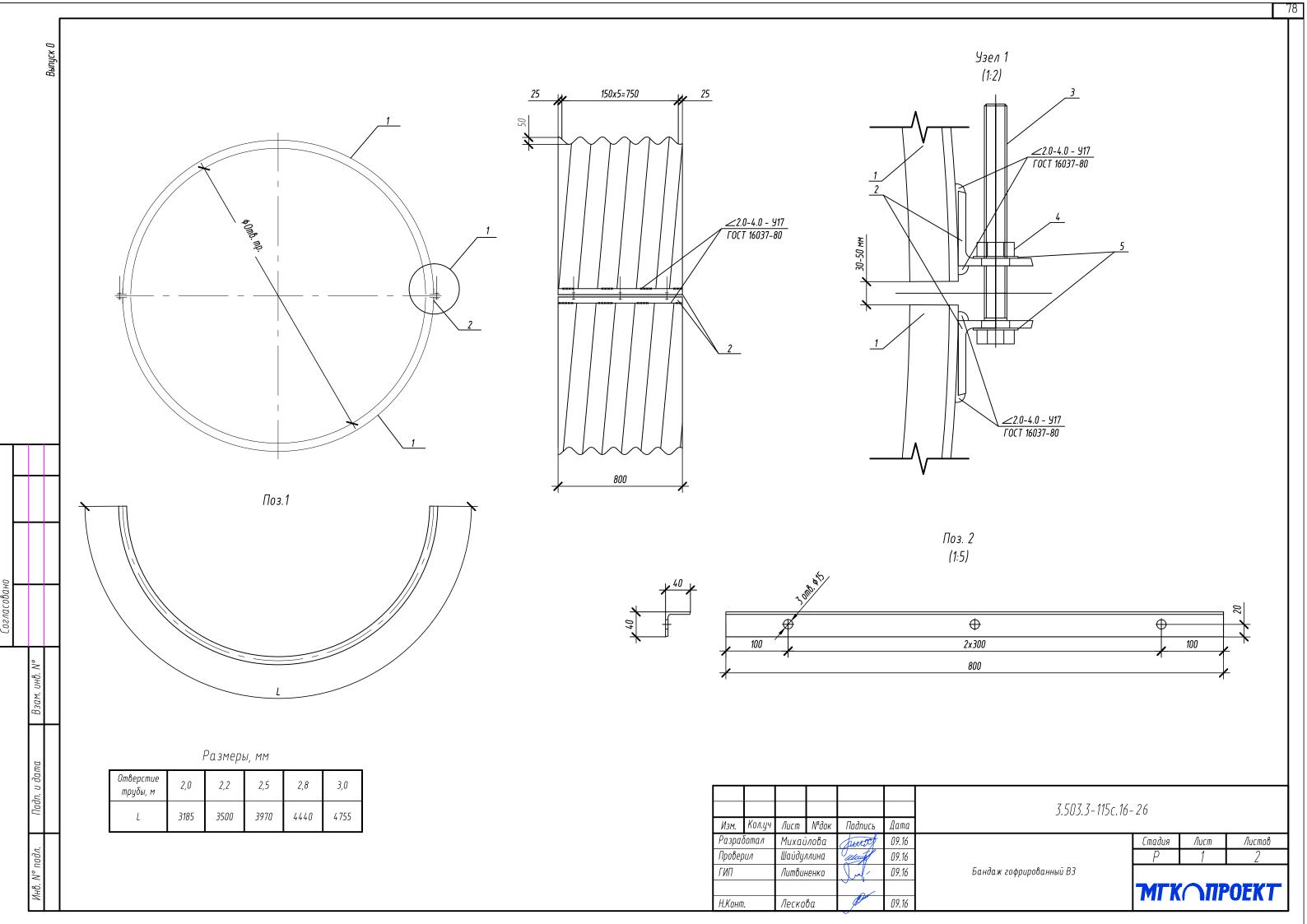
Стадия	Лист	Листов
Р		1




Бандаж гофрированный с профилем 68x13 с учетом дополнительного покрытия

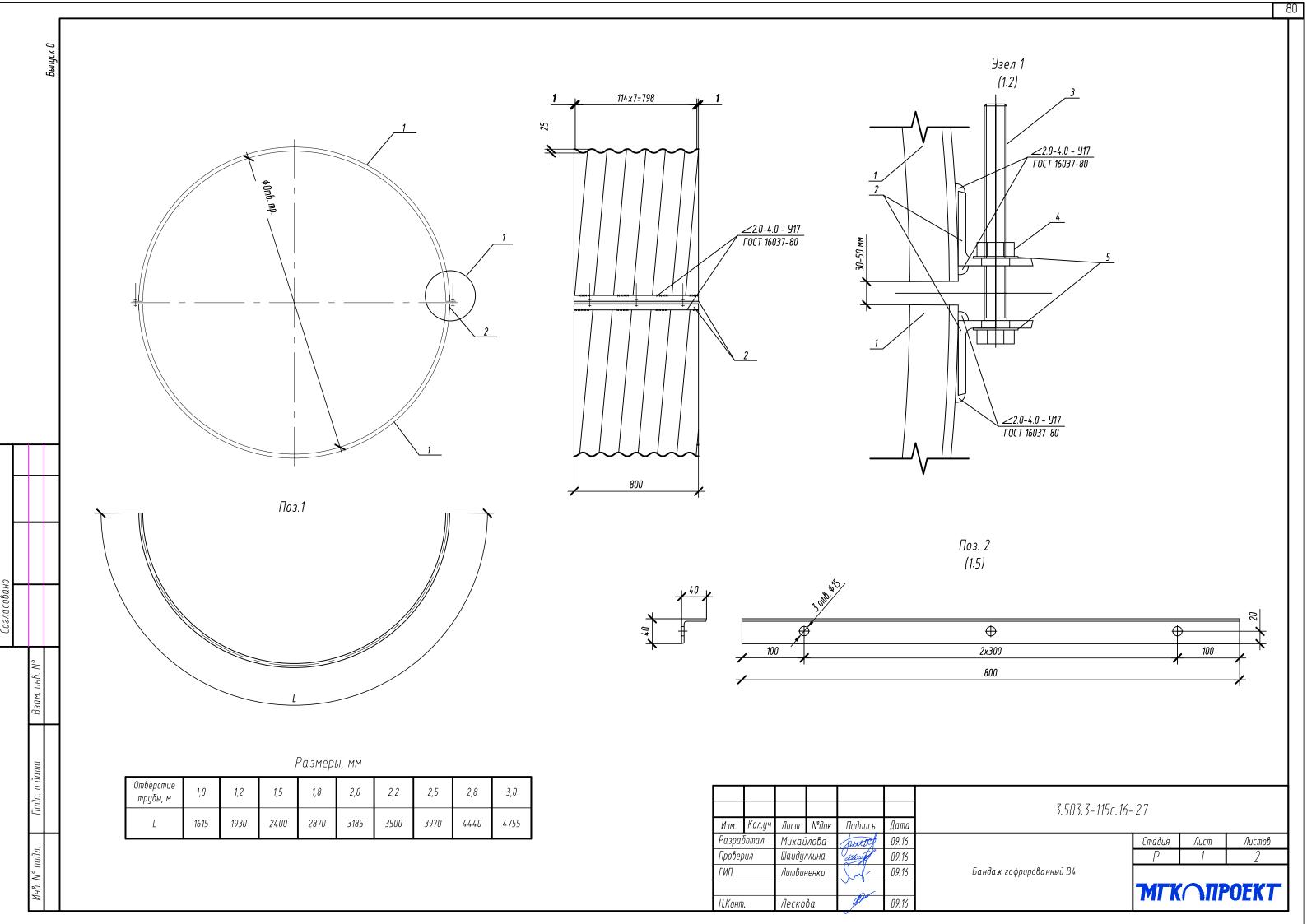
Поз.	Наименование	Ka	ол. на ба	ндаж В1	-*	Масса ед.,
1103.	пиименование	5.20	8.20	8.25	8.30	KΖ
1	/lucm 500x1820x2,0 СтальS275/EN10346	2				7,7
	Лист 500x2760x2,0 СтальS275/EN10346		2			12,3
	Лист 500x2760x2,5 СтальS275/EN10346			2		15,1
	Лист 500x2760x3,0 СтальS275/EN10346				2	17,9
2	Уголок <u>40х40х4 ГОСТ 8509-93</u> Стясп ГОСТ 535-2005 , L=500	4	4	4	4	1,21
3	Болт M12x150 class 8,8 DIN933	4	4	4	4	0,150
4	Гайка M12 DIN934	4	4	4	4	0,015
5	Шαῦδα DIN125A	8	8	8	8	0,006
	Масса бандажа, кг	20,9	30,1	35,7	41,3	

^{*} в марке бандажа серия 3.503.3-115с.16 не указана



Изм.	Кол.цч	Лист	№док	Подпись	Дата	3.503.3-115c.16-	- 24		
Разрад Провер	ботал	Михай Шайдул	ілова	purios	09.16 09.16		Стадия Р	Лист	Листов 1
ГИП		Литвиненко		Jul	09.16	Бандаж гофрированный В1	MIK		POEKT
Н.Конт).	Леско	ва	Bir	09.16		4'44 4		OLKI

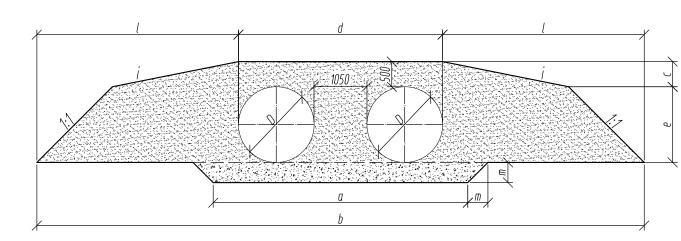
	Наименование Лист 800x1615x2,0 СтальS275/EN10025 Лист 800x1615x2,5 СтальS275/EN10025 Лист 800x1615x3,0 СтальS275/EN10025 Лист 800x1615x3,5 СтальS275/EN10025 Лист 800x1615x4,0 СтальS275/EN10025	10.20	10.25	10.30	10.35	10.10																												
	Лист 800x1615x2,5 СтальS275/EN10025 Лист 800x1615x3,0 СтальS275/EN10025 Лист 800x1615x3,5 СтальS275/EN10025	2				1U.4U	12.20	12.25	12.30	12.35	12.40	15.25	15.30	15.35	15.40	18.25		бандаж 18.35		20.25	20.30	20.35	20.40	22.30	22.35	22.40	25.30	25.35	25.40	28.30	28.35	28.40	30.35	30.40
	Лист 800x1615x3,0 СтальS275/EN10025 Лист 800x1615x3,5 СтальS275/EN10025																																	
	Лист 800x1615x3,5 СтальS275/EN10025		2																															
				2																														
	Nucm 000v141Ev/ 0 Cman 527E /EN1002E				2																													
	/IULIII 000X 10 13X4,U LIIIU/1632/3/ LIN 10023					2																												
	Лист 800x1930x2,0 СтальS275/EN10025						2																											
	Лист 800x1930x2,5 СтальS275/EN10025							2																										
	Лист 800x1930x3,0 СтальS275/EN10025								2																									
	Лист 800x1930x3,5 СтальS275/EN10025									2																								
	Лист 800x1930x4,0 СтальS275/EN10025										2																							
	Лист 800x2400x2,5 СтальS275/EN10025											2																						i
	Лист 800x2400x3,0 СтальS275/EN10025												2																					
	Лист 800x2400x3,5 СтальS275/EN10025													2																				
	Лист 800x2400x4,0 СтальS275/EN10025														2																			
1.	Лист 800x2870x2,5 СтальS275/EN10025															2																		
	Лист 800x2870x3,0 СтальS275/EN10025																2																	i
	Лист 800x2870x3,5 СтальS275/EN10025																	2																i
	Лист 800x2870x4,0 СтальS275/EN10025																		2															
	Лист 800x3185x2,5 СтальS275/EN10025																			2														
	Лист 800x3185x3,0 СтальS275/EN10025																				2													i
	Лист 800x3185x3,5 СтальS275/EN10025																					2												
	Лист 800x3185x4,0 СтальS275/EN10025																						2											i
	/lucm 800x3500x3,0 СтальS275/EN10025																							2										
	Лист 800x3500x3,5 СтальS275/EN10025																								2									
	/lucm 800x3500x4,0 СтальS275/EN10025																									2								
	Лист 800x3970x3,0 СтальS275/EN10025																										2							
	Лист 800x3970x3,5 СтальS275/EN10025																										_	2						
	Лист 800х3970х4,0 СтальЅ275/ЕN10025																												2					
	Лист 800х4440х3,0 СтальS275/EN10025																												 	2				
	Лист 800x4440x3,5 СтальS275/EN10025																													 	2			
	Лист 800x4440x4,0 СтальS275/EN10025																															2		
	Лист 800x4755x3,5 СтальS275/EN10025																													1			2	
	Лист 800x4755x4,0 СтальS275/EN10025																																	2
	Уголок 40x40x4 ГОСТ 8509-93 , L=800	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Болт M12x150 class 8,8 DIN933	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
	Гайка M12 DIN934	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
_	Шаūδа DIN125A	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
1	Масса бандажа, кг	59,1	70,7	82,3	93,9	105,5	69,1	83,0	97,0	110,9	124,9		119,0	136,4	153,9	120,2	141,0		_		_	179,0	202,3	170,4			_	221,5	250,6	214,5	247,0	279,6	264,1	299,0
																															M	LK/	ЭП	PNI
																						-									171	ı Nŧ		UL
																		-										3.503	.3-115c	16-2	5			

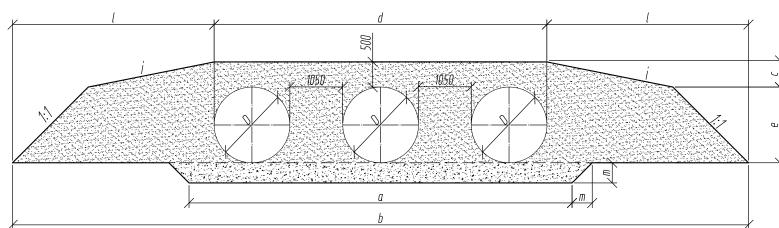

Кол.уч Лист №док Подпись Дата

			2								Macca							
Поз.	Наименование	20.25	20.30	20.35	20.40	22.30	22.35	22.40	25.30	25.35	25.40	28.30	28.35	28.40	30.30	30.35	30.40	ед., кг
1	Лист 800x3185x2,5 СтальS275/EN10025	2																68,2
	Лист 800x3185x3,0 СтальS275/EN10025		2															80,9
	Лист 800x3185x3,5 СтальS275/EN10025			2														93,7
	Лист 800x3185x4,0 СтальS275/EN10025				2													106,5
	Лист 800x3500x3,0 СтальS275/EN10025					2												89,0
	Лист 800x3500x3,5 СтальS275/EN10025						2											103,1
	Лист 800x3500x4,0 СтальS275/EN10025							2										117,1
	Лист 800x3970x3,0 СтальS275/EN10025								2									101,2
	Лист 800x3970x3,5 СтальS275/EN10025									2								117,1
	Лист 800х3970х4,0 СтальS275/EN10025										2							133,1
	Лист 800х4440х3,0 СтальS275/EN10025											2						113,3
	Лист 800x4440x3,5 СтальS275/EN10025												2					131,2
	Лист 800x4440x4,0 СтальS275/EN10025													2				149,1
	Лист 800x4755x3,0 СтальS275/EN10025														2			121,4
	Лист 800x4755x3,5 СтальS275/EN10025															2		140,5
	Лист 800x4755x4,0 СтальS275/EN10025																2	159,7
2	Уголок <u>^{40x40x4} ГОСТ 8509-93</u> , L=800	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	1,936
3	Болт M12x150 class 8,8 DIN933	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	0,150
4	Гайка M12 DIN934	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	0,015
5	Шайδа DIN125A	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	0,006
	Масса бандажа, кг	145,2	170,7	196,2	221,8	186,9	214,9	243,0	211,1	243,0	275,0	235,4	271,2	306,9	251,6	289,9	328,2	

МГК\ПРОЕКТ

Изм.	Кол.цч	Лист	№док	Подпись	Дата




Кол.уч Лист №док

Подпись

Средняя часть трубы. Гофр 125x26 мм. Обычные условия.

Средняя часть трубы. Гофр 125х26 мм.	Отв.трубы D, м	Уклон, і
Оδычные условия.	0,5; 0,8	1:8
	1,0 - 2,0	1:5
	2,2 - 3,0	1:6

- 1. Технологические требования на засыпку трубы и укладку защитного лотка приведены в пояснительной записке.
- 2. Засыпка трубы производится гравийно-песчаной смесью с модулем деформации Егр≥18 МПа или Егр≥30 МПа при коэффициенте уплотнения соответственно 0,95 и 0,98 от максимальной стандартной плотности. Засыпка трубы производится с учетом требований п. 4.4 и п.10.8 пояснительной записки.

Отв.трубы D, м	а, мм	b, mm	C, MM	d, mm	e, mm	l, mm	П, ММ
0,5	1500	8500	430	-	570	4000	400
2x0,5	3050	10050	430	2050	570	4000	400
3x0,5	4600	11600	430	3600	570	4000	400
0,8	1800	8800	385	-	915	4000	400
2x0,8	3850	10650	385	2650	915	4000	400
3x0,8	5900	12500	385	4500	915	4000	400
1,0	2000	9000	625	-	875	4000	400
2x1,0	4050	11050	625	3050	875	4000	400
3x1,0	6300	13100	625	5100	875	4000	400
1,2	2200	9200	575	-	1125	4000	400
2x1,2	4450	11450	575	3450	1125	4000	400
3x1,2	6700	13700	575	5700	1125	4000	400
1,5	2500	9500	500	-	1500	4000	400
2x1,5	5050	12050	500	4050	1500	4000	400
3x1,5	7600	14600	500	6600	1500	4000	400
1,8	2800	9800	425	-	1875	4000	400
2x1,8	5650	12650	425	4650	1875	4000	400
3x1,8	8500	15500	4 <i>2</i> 5	7500	1875	4000	400
2,0	3000	10000	375	-	2125	4000	400
2x2,0	6050	12950	375	4950	2125	4000	400
3x2,0	9100	15900	375	7900	2125	4000	400
2,2	3200	12200	460	-	2240	5000	450
2x2,2	6450	15450	460	5450	2240	5000	450
3x2,2	9700	18700	460	8700	2240	5000	450
2,5	3500	12500	400	-	2600	5000	500
2x2,5	7050	16050	400	6050	2600	5000	500
3x2,5	10600	19600	400	9600	2600	5000	500
2,8	3700	12800	340	-	2960	5000	500
2x2,8	7450	16650	340	6650	2960	5000	500
3x2,8	11175	20500	340	10500	2960	5000	500
3,0	4000	13000	300	-	3200	5000	550
2x3,0	8050	17050	300	7050	3200	5000	550
3x3,0	12900	21100	300	11100	3200	5000	550

Изм.	Кол.уч	Nucm	№док	Подпись	Дата
Разрад	<i>Ботал</i>	Михай	ілова	puricy	09.16
Провер	υЛ	Шайдул	1ЛИНА	Mais	09.16
ГИП		Литвин	ненко	Jul	09.16
Н.Конт		Леско	ва	JE A	09.16

3.503.3-115c.16-28

Трубы для обычных условий. Средняя часть трубы. Схема засыпки. Гофр 125x26 мм

Стадия	Лист	Листов
Р	1	2
МГК	∩∏F	

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
0,5	0,8	0,8	6.6
2x0,5	1,4	1,4	8.1
3x0,5	2,0	2,0	9.6
0,8	0,9	0,9	9.1
2x0,8	1,6	1,6	11.1
3x0,8	2,4	2,4	13.2
1,0	1,0	1,0	10.1
2x1,0	1,8	1,8	11.5
3x1,0	2,6	2,6	13.9
1,2	1,0	1,0	11.0
2x1,2	1,9	1,9	14.3
3x1,2	2,8	2,8	17.3
1,5	1,2	1,2	13.4
2x1,5	2,2	2,2	17.2
3x1,5	3,2	3,2	20.8
1,8	1,3	1,3	15.4
2x1,8	2,4	2,4	19.8
3x1,8	3,6	3,6	24.2
2,0	1,4	1,4	16.7
2x2,0	2,6	2,6	22.3
3x2,0	3,8	3,8	27.0
2,2	1,6	1,6	22.8
2x2,2	3,0	3,0	28.4
3x2,2	4,6	4,6	33.8
2,5	2,0	2,0	25.1
2x2,5	3,8	3,8	31.4
3x2,5	5,6	5,6	37.7
2,8	2,1	2,1	27.1
2x2,8	4,0	4,0	34.3
3x2,8	5,8	5,8	41.5
3.0	2,5	2,5	28.3
2x3,0	4,8	4,8	36.1
3x3,0	7,4	7,4	44.0

1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы.
2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием.
3. Объем работ по устройству лотка не зависят от применяемого материала.
4. Объем работ для труб гофрированного профиля 114х25 мм принимается по аналогии объемов работ для труб с гофрированным профилем 125х26 мм.

Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотки м ³
0,5	2,1	1,7	-
2x0,5	4,1	3,4	-
3x0,5	6,1	5,1	-
0,8	3,2	2,7	-
2x0,8	6,5	5,4	-
3x0,8	9,8	8,1	-
1,0	4,2	3,4	0,04
2x1,0	8,4	6,8	0,08
3x1,0	12,6	10,2	0,12
1,2	5,0	4,1	0,04
2x1,2	10,0	8,1	0,08
3x1,2	15,1	12,2	0,12
1,5	6,3	5,1	0,05
2x1,5	12,6	10,2	0,10
3x1,5	18,8	15,3	0,15
1,8	7,5	6,1	0,06
2x1,8	15,1	12,2	0,12
3x1,8	22,6	18,3	0,18
2,0	8,4	6,7	0,07
2x2,0	16,8	13,6	0,14
3x2,0	25,1	20,4	0,21
2,2	9,2	7,5	0,07
2x2,2	18,4	14,9	0,14
3x2,2	27,6	22,4	0,21
2,5	10,5	8,5	0,08
2x2,5	20,9	17,0	0,16
3x2,5	31,4	25,5	0,24
2,8	11,7	9,5	0,08
2x2,8	23,4	19,0	0,16
3x2,8	35,2	28,5	0,24
3.0	12,6	10,2	0,09
2x3,0	25,1	20,4	0,18
3x3,0	37,7	30,5	0,27

Изм.	Кол.уч	Лист	№док	Подпись	Дата

Средняя часть трубы. Гофр 125х26 мм.

Отв.трубы D, м	а, мм	b, mm	C, MM	d, mm	e, mm	l, mm
1,5	2500	9500	500	-	1500	4000
2x1,5	5250	12250	500	4250	1500	4000
3x1,5	8000	15000	500	7000	1500	4000
1,8	2800	9800	425	-	1875	4000
2x1,8	5850	12850	425	4850	1875	4000
3x1,8	8900	15900	425	7900	1875	4000
2,0	3000	10000	375	-	2125	4000
2x2,0	6250	13150	375	5150	2125	4000
3x2,0	9500	16300	375	8300	2125	4000
2,2	3200	12200	460	-	2240	5000
2x2,2	6750	15650	460	5650	2240	5000
3x2,2	10100	19100	460	9100	2240	5000
2,5	3500	12500	400	-	2600	5000
2x2,5	7250	16250	400	6250	2600	5000
3x2,5	11000	20000	400	10000	2600	5000
2,8	3700	12800	340	-	2960	5000
2x2,8	7650	16850	340	6850	2960	5000
3x2,8	11575	20900	340	10900	2960	5000
3.0	4000	13000	300	-	3200	5000
2x3,0	8250	17250	300	7250	3200	5000
3x3,0	13300	21500	300	11500	3200	5000

Отв.трубы D, м	Уклон, і
1,5 - 2,0	1:5
2,2 - 3,0	1:6

- 1. Технологические требования на засыпку трубы и укладку защитного лотка приведены в пояснительной записке.
- 2. Засыпка трубы производится гравийно-песчаной смесью с модулем деформации Егр≥18 МПа или Егр≥30 МПа при коэффициенте уплотнения соответственно 0,95 и 0,98 от максимальной стандартной плотности.

Засыпка трубы производится в с учетом требований п.4.4 и п.10.8 пояснительной записки.

Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разработал		Михай	ілова	hursel	09.16	
Провер	υЛ	Шайдул	1ЛИНА	Mais	09.16	Tau. 5
ГИП		Литвин	ненко	Jul	09.16	Трубы северного исполнени Схема засыпки. I
						CXCIIA SACBIINA, I
Н.Конт		Леско	ва	A CONTRACTOR OF THE PARTY OF TH	09.16	

3.503.3-115c.16-29

рубы северного исполнения. Средняя часть трубы. Схема засыпки. Гофр 125x26 мм

Стадия	Nucm 1	Листов				
P 1 1 2						
MU		POEKT				

	_
ς	7
	~
	\Box
	⋑
	⊆
,	\$
L	-

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
1,5	2,2	2,2	13.4
2x1,5	4,2	4,2	17.2
3x1,5	6,1	6,1	20.8
1,8	2,4	2,4	15.4
2x1,8	4,6	4,6	19.8
3x1,8	6,7	6,7	24.2
2,0	2,6	2,6	16.7
2x2,0	4,9	4,9	22.3
3x2,0	7,1	7,1	27.0
2,2	2,6	2,6	22.8
2x2,2	5,2	5,2	28.4
3x2,2	7,6	7,6	33.8
2,5	3,1	3,1	25.1
2x2,5	5,6	5,6	31.4
3x2,5	8,3	8,3	37.7
2,8	3,1	3,1	27.1
2x2,8	5,8	5,8	34.3
3x2,8	8,6	8,6	41.5
3.0	3,3	3,3	28.3
2x3,0	6,3	6,3	36.1
3x3,0	9,7	9,7	44.0

1. Объем работ по устройс	тву изоляции приведен	при устройстве ее	только на наружной п	оверхности
трубы.			· -	•

^{2.} Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным

Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотк м ³
1,5	6,3	5,1	0,05
2x1,5	12,6	10,2	0,10
3x1,5	18,8	15,3	0,15
1,8	7,5	6,1	0,06
2x1,8	15,1	12,2	0,12
3x1,8	22,6	18,3	0,18
2,0	8,4	6,7	0,07
2x2,0	16,8	13,6	0,14
3x2,0	25,1	20,4	0,21
2,2	9,2	7,5	0,07
2x2,2	18,4	14,9	0,14
3x2,2	27,6	22,4	0,21
2,5	10,5	8,5	0,08
2x2,5	20,9	17,0	0,16
3x2,5	31,4	25,5	0,24
2,8	11,7	9,5	0,08
2x2,8	23,4	19,0	0,16
3x2,8	35,2	28,5	0,24
3.0	12,6	10,2	0,09
2x3,0	25,1	20,4	0,18
3x3,0	37,7	30,5	0,27

		_		
MI			124	EKT
	N		II V	LNI

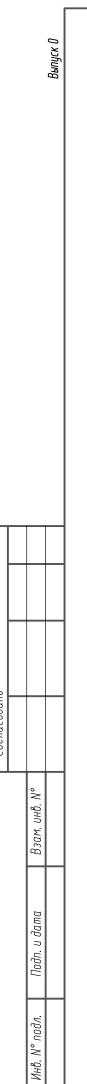
И	3M.	Кол.цч	Nucm	№док	Подпись	Дата

	//
3.503.3-115c.16-29	

цинковым покрытием.
3. Объем работ по устройству лотка не зависят от применяемого материала.
4. Объем работ для труб гофрированного профиля 114х25 мм принимается по аналогии объемов работ для труб с гофрированным профилем 125х26 мм.

d, mm

l, mm


Π, MM

e, mm

b, mm

C, MM

a, mm

редняя часть трубы. Гофр 150x50 мм. Обычные условия.	

Уклон, i
<i>1</i> :5
1:6

Отв.тру бы D, м	Уклон, i
2,0	1:5
2,2 - 3,0	1:6

Отв.трубы D, м

2,0

2x2,0

3x2,0

2,2

2x2,2

3x2,2

2,5

2x2,5

3x2,5

2,8

2x2,8

3x2,8

3.0

2x3,0

3x3,0

/	b		
X l	y d	y l	
1	4100		
	1100		7
			a a
*	b	<u> </u>	

d 900		,
y 1100 y 1100 y		Ú
		Ф
	E	
а		
b		,

- 1. Технологические требования на засыпку трубы и укладку защитного лотка приведены в пояснительной записке.
- 2. Засыпка трубы производится гравийно-песчаной смесью с модулем деформации Егр≥18 МПа или Егр≥30 МПа при коэффициенте уплотнения соответственно 0,95 и 0,98 от максимальной стандартной плотности.

Засыпка трубы производится в с учетом требований п. 4.4 и п.10.8 пояснительной записки.

						_
						l
Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разрад	<i>Ботал</i>	Михай	ілова	hursel	09.16	Γ
Провер	υЛ	Шайдул	1ЛИНО.	Mais	09.16	1
ГИП		Литвин	ненко	Jul	09.16	1
Н.Конт		Леско	ва	A Comment of the Comm	09.16	

	Стадия	Лист	Листов				
	Р	1	2				
	MCK \ TPOFKT						

						exerta sacuma. Popp 130x30 mm	MIK		OEKT
ИΠ		Литвин	ненко	Jul	09.16	Трубы для обычных условий. Средняя часть трубы. Схема засыпки. Гофр 150x50 мм			
ровер	υЛ	Шайдул	1ЛИНА	Mary	09.16	Tourist dag of many resolution to oduce users mounts	Р	1	2
азрас	<i>ботал</i>	Михай	ілова	hursel	09.16		Стадия	Лист	Листов
1зм.	Кол.уч	Лист	№док	Подпись	Дата				
						3.503.3-115c.16-	-30		

Устройство защитного лотка,

0,07 0,14

0,21 0,07

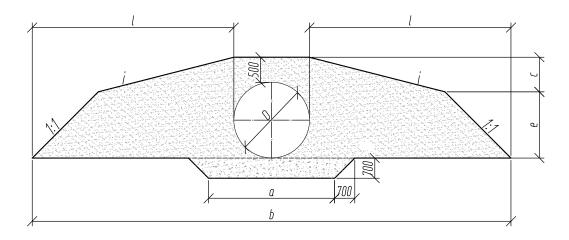
0,14 0,21

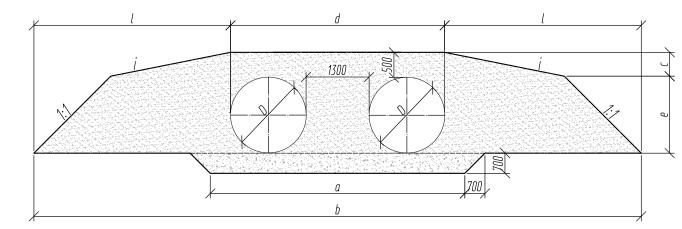
0,08

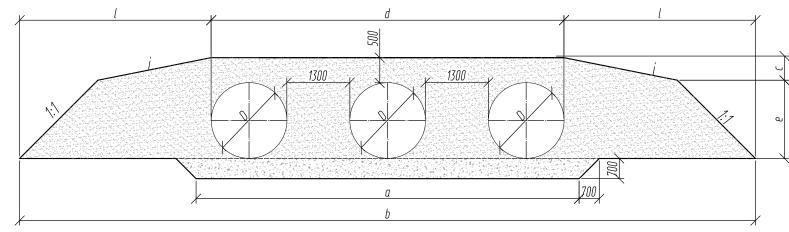
0,16 0,24 0,08 0,16 0,24 0,09 0,18 0,27

Ведомость объемов работ на 1 п.м. средней части трубы. Гофр 150х50 мм.						
Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³			
2,0	1,4	1,4	16.7			
2x2,0	2,6	2,6	22.4			
3x2,0	2,8	2,8	27.2			
2,2	1,6	1,6	22.8			
2x2,2	3,1	3,1	28.5			
3x2,2	4,6	4,6	34.1			
2,5	2,0	2,0	25.1			
2x2,5	3,8	3,8	31.5			
3x2,5	5,6	5,6	38.0			
2,8	2,1	2,1	27.1			
2x2,8	4,0	4,0	34.5			
3x2,8	5,9	5,9	41.9			
3.0	2,5	2,5	28.3			
2x3,0	4,8	4,8	36.3			
3x3,0	7,5	7,5	44.3			

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
2,0	1,4	1,4	16.7
2x2,0	2,6	2,6	22.4
3x2,0	2,8	2,8	27.2
2,2	1,6	1,6	22.8
2x2,2	3,1	3,1	28.5
3x2,2	4,6	4,6	34.1
2,5	2,0	2,0	25.1
2x2,5	3,8	3,8	31.5
3x2,5	5,6	5,6	38.0
2,8	2,1	2,1	27.1
2x2,8	4,0	4,0	34.5
3x2,8	5,9	5,9	41.9
3.0	2,5	2,5	28.3
2x3,0	4,8	4,8	36.3
3x3,0	7,5	7,5	44.3
		1 ","	77.5


1. Объем работ по устройству изоляции приведен при устройстве ее только на на	гружной п	поверхності	И
πρуδы.			


^{2.} Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. З. Объем работ по устройству лотка не зависят от применяемого материала.


	Alli	OEK	
		ULI	

Изм.	Кол.цч	/lucm	№док	Подпись	Дата

Дополнительная ведомость объемов работ на 1 п.м. средней части для труб с однослойным покрытием из цинка. Гофр 150х50 мм.

- 1. Технологические требования на засыпку трубы и укладку защитного лотка приведены в пояснительной записке.
- 2. Засыпка трубы производится гравийно-песчаной смесью с модулем деформации Егр≥18 МПа или Егр≥30 МПа при коэффициенте уплотнения соответственно 0,95 и 0,98 от максимальной стандартной плотности.
- Засыпка трубы производится в с учетом требований п. 4.4 и п.10.8 пояснительной записки.

Ond mark. D		b		4		1
Отв.трубы D, м	а, мм	b, мм	C, MM	d, mm	e, mm	l, mm
2,0	3000	10000	375	ı	2125	4000
2x2,0	6300	13200	375	5200	2125	4000
3x2,0	9600	16400	375	8400	2125	4000
2,2	3200	12200	460	-	2240	5000
2x2,2	6800	15700	460	5700	2240	5000
3x2,2	10200	19200	460	9200	2240	5000
2,5	3500	12500	400	-	2600	5000
2x2,5	7300	16300	400	6300	2600	5000
3x2,5	11100	20100	400	10100	2600	5000
2,8	3700	12800	340	-	2960	5000
2x2,8	7700	16900	340	6900	2960	5000
3x2,8	11675	21000	340	11000	2960	5000
3.0	4000	13000	300	-	3200	5000
2x3,0	8300	17300	300	7300	3200	5000
3x3,0	13400	21600	300	11600	3200	5000

Отв.трубы D, м	Уклон, і
2,0	<i>1:</i> 5
2,2 - 3,0	1:6

Изм.	Кол.уч	Лист	№док	Подпись	Дата	
Разрад	<i>Ботал</i>	Михай	ілова	hurs	09.16	
Проверил		Шайдуллина		Mary	09.16	7
ГИП		Литвиненко		Jul	09.16	'
Н.Конт		Леско	ва	JE ALL	09.16	

3.503.3-115c.16-31

Трубы северного исполнения. Средняя часть трубы. Схема засыпки. Гофр 150х50 мм

Трубы северного исполнения. Средняя часть трубы. Схема засыпки. Гофр 150х50 мм

ТКОПРОЕКТ

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
2,0	2,6	2,6	16.7
2x2,0	4,9	4,9	22.3
3x2,0	7,2	7,2	27.0
2,2	2,6	2,6	22.8
2x2,2	5,3	5,3	28.4
3x2,2	7,6	7,6	33.8
2,5	3,1	3,1	25.1
2x2,5	5,6	5,6	31.4
3x2,5	8,3	8,3	37.7
2,8	3,1	3,1	27.1
2x2,8	5,9	5,9	34.3
3x2,8	8,7	8,7	41.5
3.0	3,3	3,3	28.3
2x3,0	6,3	6,3	36.1
3x3,0	9,9	9,9	44.0

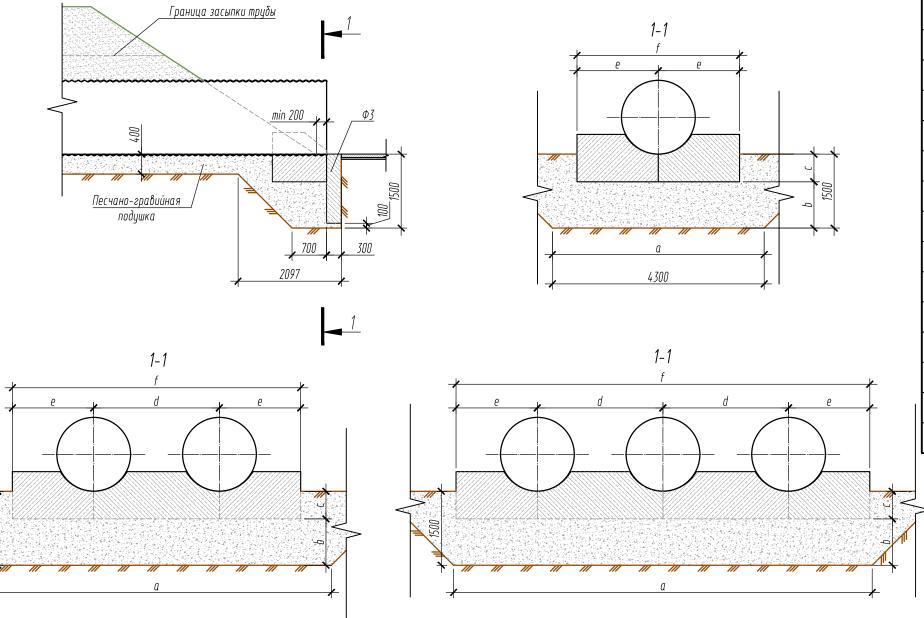
Отв.трубы, м	м ²	гидроизоляции, м ²	м ³
2,0	8,6	7,8	0,07
2x2,0	17,3	15,6	0,14
3x2,0	25,9	23,4	0,21
2,2	9,5	8,6	0,07
2x2,2	19,0	17,1	0,14
3x2,2	28,5	25,7	0,21
2,5	10,8	9,7	0,08
2x2,5	21,6	19,5	0,16
3x2,5	32,4	29,2	0,24
2,8	12,1	10,9	0,08
2x2,8	24,2	21,8	0,16
3x2,8	36,3	32,7	0,24
3.0	13,0	11,7	0,09
2x3,0	25,9	23,4	0,18
3x3,0	38,9	35,1	0,27

Дополнительная ведомость объемов работ на 1 п.м. средней части для труб с однослойным покрытием из цинка. Гофр 150х50 мм.

Устройство обмазочной

Устройство защитного лотка,

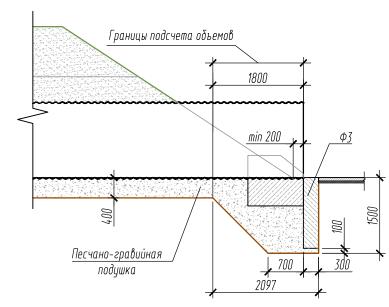
Оборачивание трубы геотекстилем,


Отв.трубы, м

- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы.
- 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытие.
 - 3. Объем работ по устройству лотка не зависят от применяемого материала.

		_		
MI			124	EKT
	N		II V	LNI

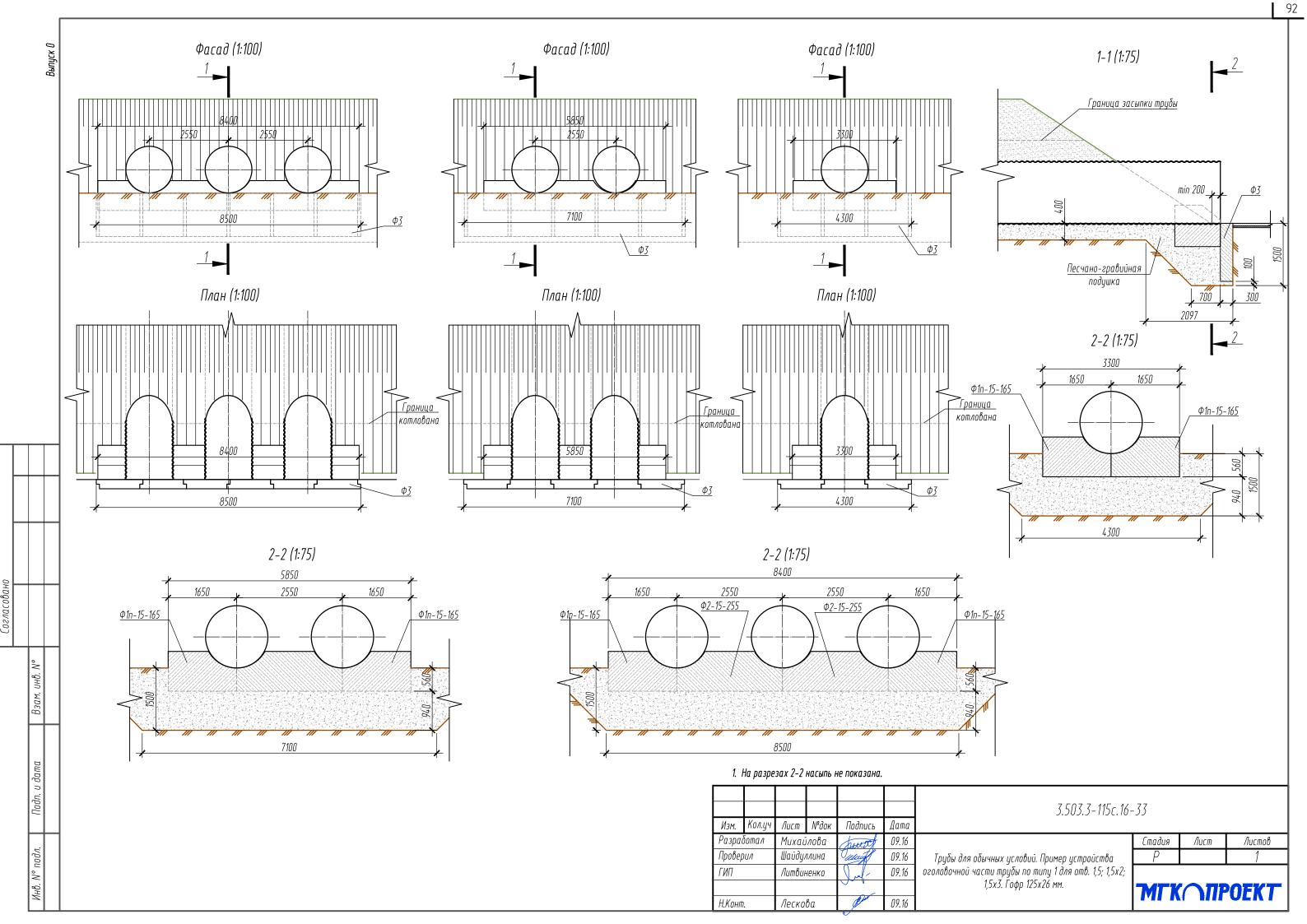
Изм.	Кол.цч	Лист	№док	Подпись	Дата


Геоме	Геометрические характеристики оголовочной части трубы. Гофр 125x26 мм. Тип 1.								
Отв.трубы D, м	а, мм	Ь, мм	C, MM	d, mm	e, mm	f, mm	Кол-во блоков ФЗ, шт.		
0,5	2900	970	530	-	1000	2000	2		
2x0,5	4300	970	530	1550	1000	3550	3		
3x0,5	5700	970	530	1550	1000	5100	4		
0,8	2900	970	530	-	1200	2400	2		
2x0,8	4300	970	530	1850	1200	4250	3		
3x0,8	7100	970	530	1850	1200	6100	5		
1,0	2900	940	560	-	1300	2600	2		
2x1,0	5700	940	560	2050	1300	4650	4		
3x1,0	7100	940	560	2050	1300	6700	5		
1,2	3000	940	560	-	1500	3000	2		
2x1,2	5700	940	560	2250	1500	5250	4		
3x1,2	8500	940	560	2250	1500	7500	6		
1,5	4300	940	560	-	1650	3300	3		
2x1,5	7100	940	560	2550	1650	5850	5		
3x1,5	8500	940	560	2550	1650	8400	6		

1. На разрезах 1-1 насыпь не показана. 1. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка применяется в соответствие с требованиями п. 5.3 пояснительной записки 2. Для труб диаметром 0,5 и 0,8 м защитный лоток не устраивается. 3. Объемы работ приведены на 2 листе данного документа.

							3.503.3-115c.16-32			
И	1зм.	Кол.уч	Nucm	№док	Подпись	Дата				
Po	Разработал		Михай	ілова	hurof	09.16	Стадия Лист			Листов
Пр	Проверил ГИП Н.Конт.		Шайдул	1ЛИНА	Mais	09.16	Схема труб для обычных условий. Основные размеры	Р	1	2
ΓV			Литвин	ненко	Jul	09.16	для устройства оголовочной части трубы по типу 1.	МГК ОПРОЕК		
							Гофр 125х26 мм.			POFKT
Н.			Леско	ва	JE Ju	09.16	MI KI NIFU			

	Ведомость объемов работ на оголовочную часть трубы. Тип1. Гофр 125х26мм.							
Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Установка блоков экрана. Бетон В20, м ³	Установка блоков фундамента. Бетон В20, м ³	Обратная засыпка блоков экрана, м ³			
0,5	10,1	16,5	1,2	1,4	5,4			
2x0,5	12,5	21,8	1,8	2,5	7,2			
3x0,5	14,9	27,0	2,4	3,6	8,9			
0,8	9,9	16,5	1,2	1,7	5,4			
2x0,8	12,1	21,8	1,8	3,1	7,2			
3x0,8	17,7	32,3	3,0	4,4	10,6			
1,0	9,6	16,9	1,2	2,0	5,4			
2x1,0	15,0	27,0	2,4	3,5	8,9			
3x1,0	17,0	37,5	3,0	5,0	10,6			
1,2	9,7	16,9	1,2	2,4	5,6			
2x1,2	14,6	27,0	2,4	4,2	8,9			
3x1,2	19,9	37,5	3,5	6,0	12,4			
1,5	12,6	21,8	1,8	2,9	8,3			
2x1,5	17,6	32,3	3,0	5,0	12,2			
3x1,5	19,3	37,5	3,5	7,1	14,2			


Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м ³
0,5	3,78	3,06	-
2x0,5	7,38	6,12	-
3x0,5	10,98	9,18	-
0,8	5,76	4,86	-
2x0,8	11,70	9,72	-
3x0,8	17,64	14,56	-
1,0	7,56	6,12	0,07
2x1,0	15,12	12,24	0,14
3x1,0	22,68	18,36	0,22
1,2	9,00	7,38	0,07
2x1,2	18,00	14,56	0,14
3x1,2	27,18	21,96	0,22
1,5	11,34	9,18	0,09
2x1,5	22,68	18,36	0,18
3x1,5	33,84	27,54	0,29



- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы.
 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются.
 3. Конструкция защитного лотка приведена в документе 17.
 4. Объем работ приведен на одну оголовочную часть трубы.
 5. Расход металла на трубу приведен в документе 19.

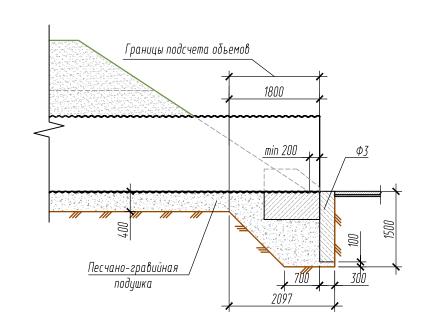
Изм.	Кол.уч	Лист	№док	Подпись	Дата

Геометрические характеристики оголовочной части трубы. Гофр 150х50. Тип 1								
Отв.трубы D, м	а, мм	b, mm	C, MM	d, mm	e, mm	f, mm	Кол-во блоков Ф3, ит.	
2,0	4300	940	560	-	2050	4 100	3	
2x2,0	8500	940	560	3100	2050	7200	6	
3x2,0	11300	940	560	3100	2050	10300	8	

1. На разрезах 1-1 насыпь не показана 2. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка применяется в соответствие с требованиями п. 5.3 пояснительной записки 3. Объемы работ приведены на 2 листе данного документа.

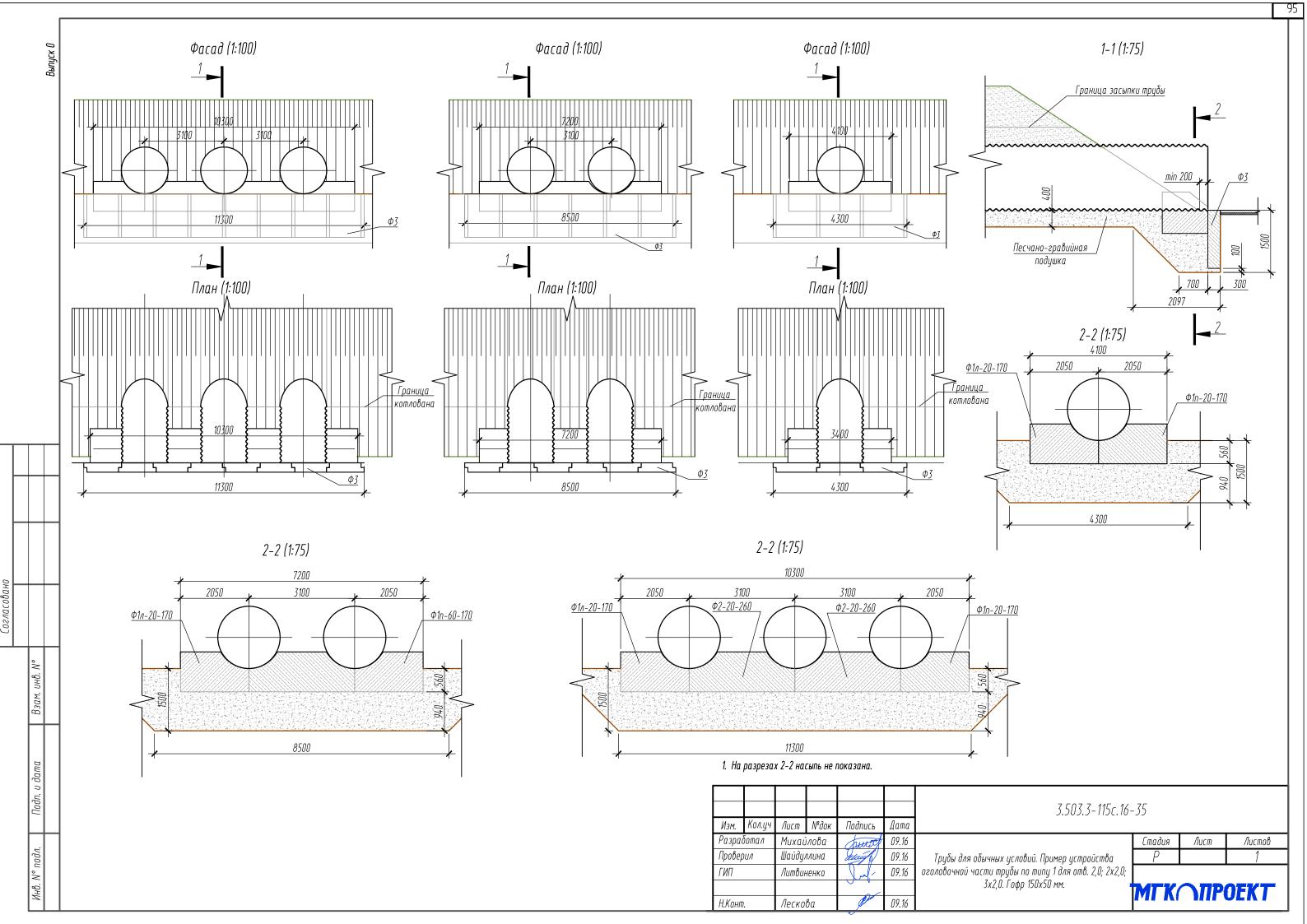
	_					
						3.503.3-115 ₀
Изм.	Кол.уч	Лист	№док	Подпись	Дата	
Разработал		Михайлова		puroch	09.16	
Провер	υЛ	Шайдуллина		May	09.16	Схема труб для обычных условий. Основные размер
ГИП		Литвиненко		Jul	09.16	для устройства оголовочной части трубы по типу
						Гофр 150х50 мм.
Н.Конт.		Леско	ва	Je ha	09.16	

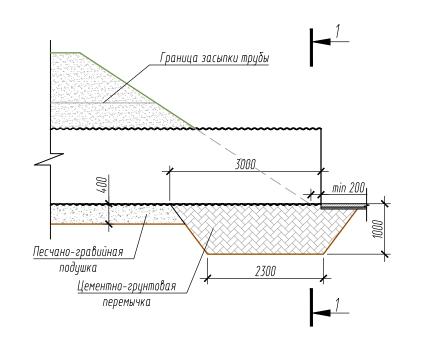
5c.16-34

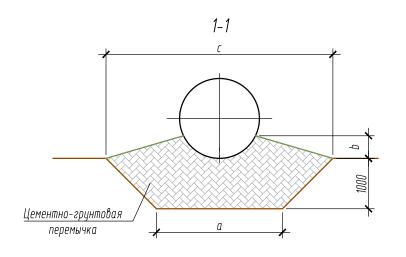

Стадия Лист Листов

Bunick
X)
≘
Ş
ã

Ведомость объемов работ на оголовочную часть трубы. Гофр 150х50. Тип 1									
Отв.трубы D, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Установка блоков экрана. Бетон В2О, м ³	Установка блоков фундамента. Бетон В20, м ³	Обратная засыпка блоков экрана, м ³				
2	12.0	21.8	1.8	3.0	7.2				
2x2,0	16.7	32.3	3.5	5.8	10.6				
3x2,0	25.5	48.0	4.7	8.5	15.8				


Дополнительная ведомость работ на оголовочную часть трубы с однослойным цинковым покрытием. Гофр 150x50. Tun 1								
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м ³					
2,0	15,6	14,0	0,1					
2x2,0	31,1	28,0	0,3					
3x2,0	48,8	42,1	0,4					



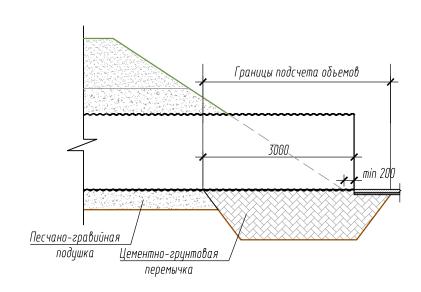

- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы. 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются. 3. Конструкция защитного лотка приведена в документе 18. 4. Объем работ приведен на одну оголовочную часть трубы. 5. Расход металла на трубу приведен в документе 19.

MI	KC	ПРОЕК	T
	# N. F	HIII OLIK	•

Изм.	Кол.уч	Nucm	№док	Подпись	Дата

1–1	
y C	
	q
лентно-грунтовая перемычка а	1000
' '	

Отв.трубы D, м	а, мм	Ь, мм	C, MM	d, мм
0,5	1500	150	3500	-
2x0,5	3100	150	5100	1550
3x0,5	4600	150	6600	1550
0,8	1800	240	3800	-
2x0,8	3700	240	5700	1850
3x0,8	5500	240	7500	1850
1,0	2000	300	4000	-
2x1,0	4 100	300	6100	2050
3x1,0	6100	300	8100	2050
1,2	2200	360	4200	-
2x1,2	4500	360	6500	2250
3x1,2	6700	360	8700	2250
1,5	2500	450	4500	-
2x1,5	5100	450	7100	2550
3x1,5	7600	450	9600	2550

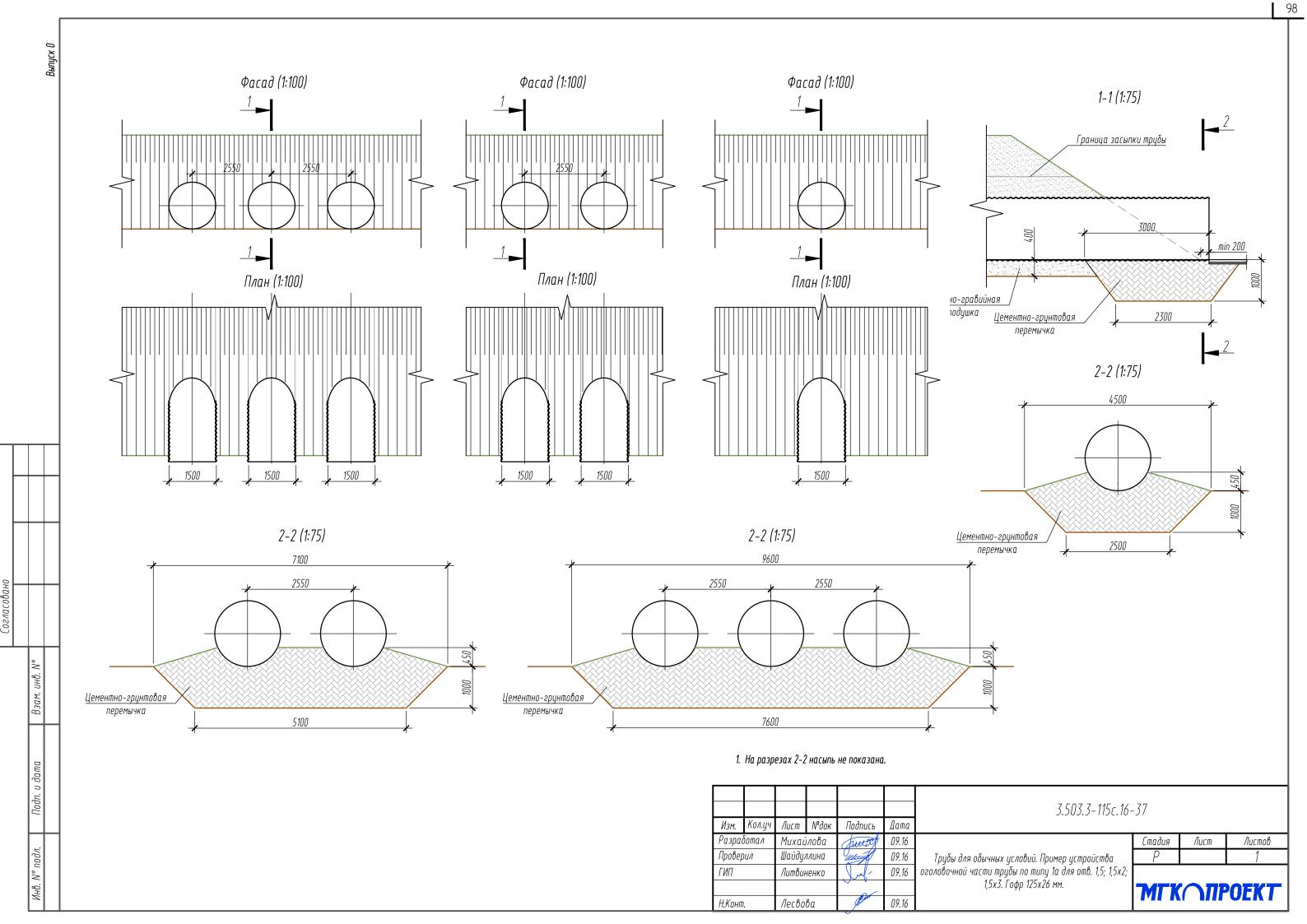

- 1. На разрезах 1-1 насыпь не показана. 2. Оголовки по типу 1а применяются при наличии в основании глинистых грунтов. 3. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка применяется в соответствие с требованиями п. 5.4 пояснительной записки. 4. Для труб диаметром 0,5 и 0,8 м защитный лоток не устраивается. 5. Объемы работ приведены на 2 листе данного документа.

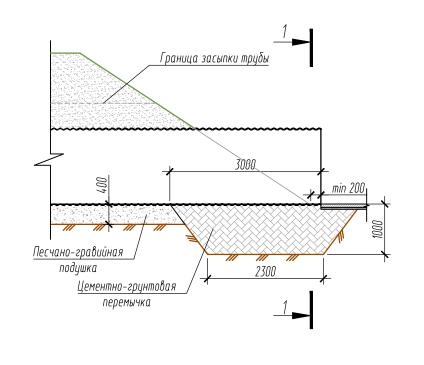
			_						
						3.503.3-115c.16-36			
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разра	ботал	Михай	ілова	hurs	09.16		Стадия	Лист	Листов
Провер	ОИЛ	Шайду/	1ЛИНА	Mary	09.16	Схема труб для обычных условий. Основные размеры	Р	1	2
ГИП		Литвин	ненко	Jul-	09.16	для устройства оголовочной части трубы по типу 1а.			
						Гофр 125х26 мм.			OEKT
Н.Конп).	Леско	ва	JE NO	09.16		**** **		OLKI

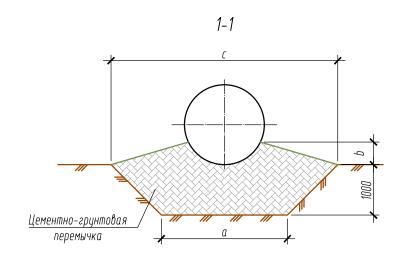
			Взам. инв. N°	Подп. и дата	Инв. № подл.
)	Согласовано			

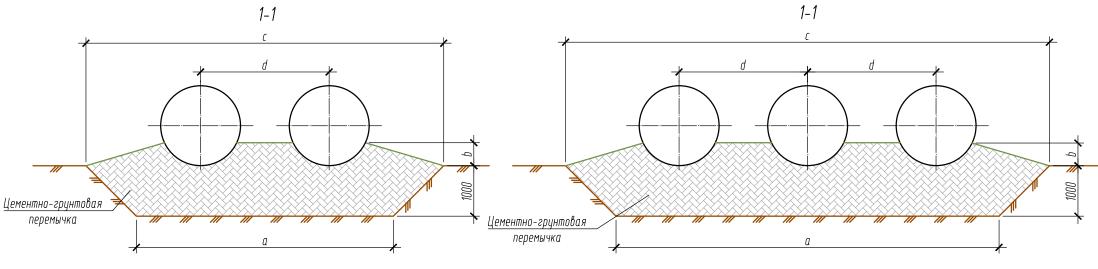
Этв.трубы, м	Устройство цементно-грунтовой перемычки, м ³	Рытье котлована, м ³
0,5	9,1	7,5
2x0,5	14,9	12,3
3x0,5	20,4	16,8
0,8	10,7	8,4
2x0,8	17,9	14,1
3x0,8	24,6	19,5
1,0	11,9	9,0
2x1,0	19,9	15,3
3x1,0	27,5	21,3
1,2	13,1	9,6
2x1,2	21,9	16,5
3x1,2	30,4	23,1
1,5	14,9	10,5
2x1,5	25,1	18,3
3x1,5	34,8	25,8

Отв.трубы, м Оборачивание трубы геотекстилем, м ²		Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м
0,5	6,30	5,10	-
2x0,5	12,30	10,20	-
3x0,5	18,30	15,30	-
0,8	9,60	8,10	-
2x0,8	19,50	16,20	-
3x0,8	29,40	24,27	-
1,0	12,60	10,20	0,12
2x1,0	25,20	20,40	0,24
3x1,0	37,80	30,60	0,36
1,2	15,00	12,30	0,12
2x1,2	30,00	24,27	0,24
3x1,2	45,30	36,60	0,36
1,5	18,90	15,30	0,15
2x1,5	37,80	30,60	0,30
3x1,5	56,40	45,90	0,45



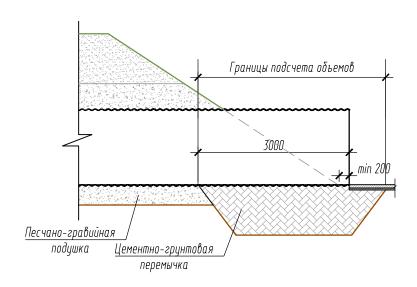

- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы.
 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются.
 3. Конструкция защитного лотка приведена в документе -17.
 4. Объем работ приведен на одну оголовочную часть трубы.
 5. Расход металла на трубу приведен в документе 19.




Изм.	Кол.цч	Nucm	№док	Подпись	Дата

3.503.3-115c.16-36

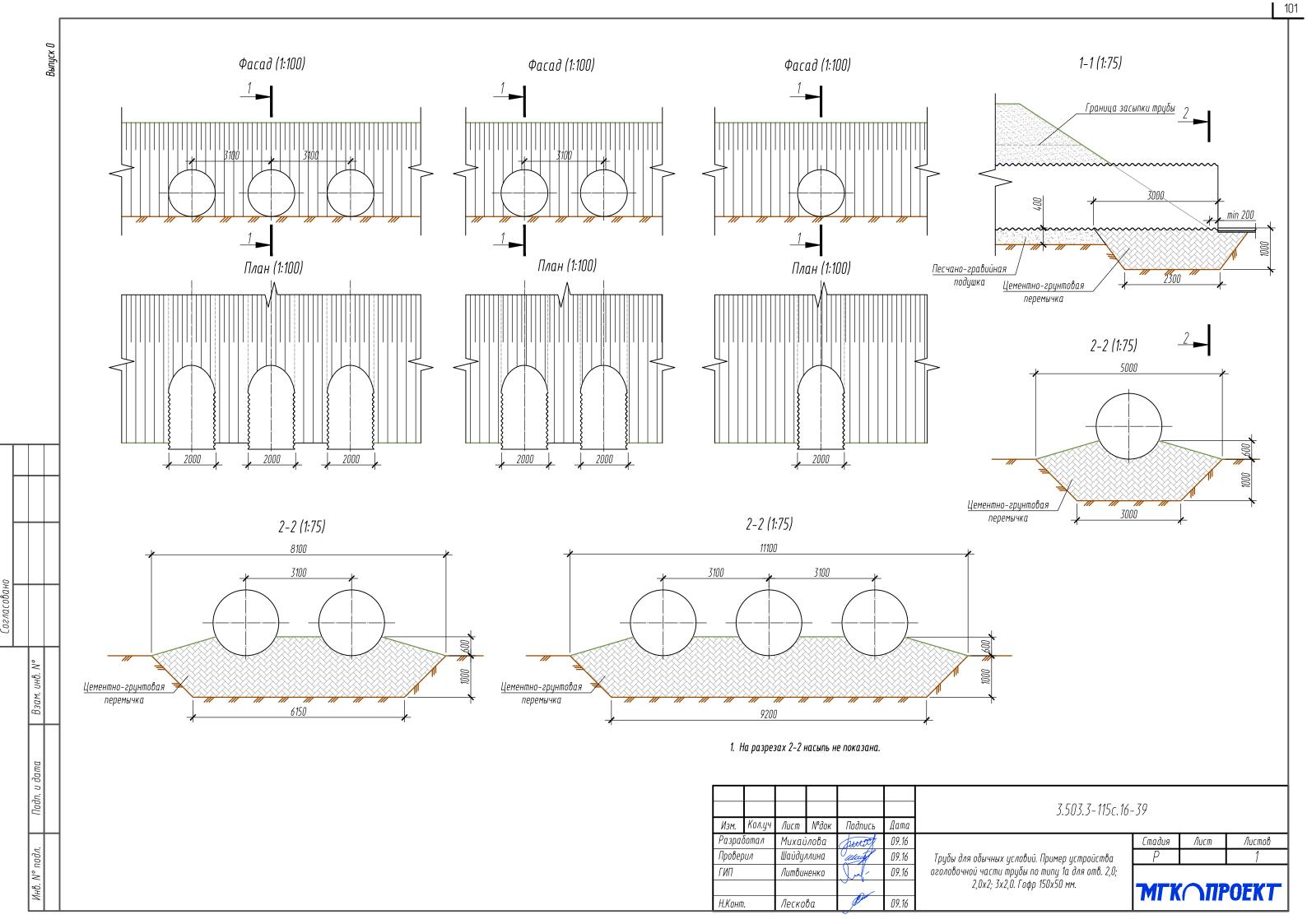
D, M MM MM MM MM 3000 2,0 5000 600 6150 600 3100 2x2,0 8100 3x2,0 9200 600 3100 11100

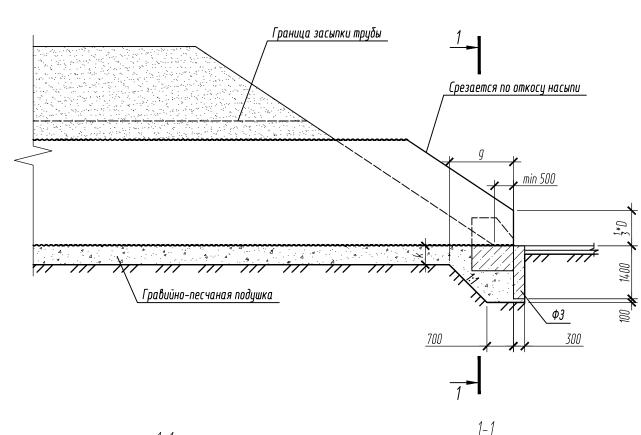

Отв.трубы

- 1. На разрезах 1-1 насыпь не показана. 2. Оголовки по типу 1а применяются при наличии в основании глинистых грунтов. 3. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка применяется в соответствие с требованиями п. 5.4 пояснительной записки. 4. Для труб диаметром 0,5 и 0,8 м защитный лоток не устраивается. 5. Объемы работ приведены на 2 листе данного документа.

						3.503.3-115c.16-38			
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разра	δοπαл	Михай	ілова	hursel	09.16		Стадия	Лист	Листов
Провер	DU/I	Шайдул	1лина	May	09.16	Схема труб для обычных условий. Основные размеры	Р		2
ГИП		Литвин	ненко	Jul	09.16	для устройства оголовочной части трубы по типу 1а.			
						Гофр 150x50 мм. МГКОПР		POFK	
Н.Конп	7.	Леско	ва	A PARTIE OF THE	09.16				ULK

	Ведомость объемов работ на оголовочную часть трубы. Тип 1а. Гофр 150х50						
Отв.трубы, м	Устройство цементно-грунтовой перемычки, м ³	Рытье котлована, м ³					
2	18,2	12					
2x2,0	30,7	21,5					
3x2,0	42,9	30,6					


Дополнительная ведомость объемов работ на оголовочную часть для труб с однослойным цинковым покрытием. Тип1а. Гофр 150х50 мм.						
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м ³			
2,0	25,9	23,4	0,2			
2x2,0	51,9	46,7	0,4			
3x2,0	77,8	70,1	0,6			


- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы. 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются. 3. Конструкция защитного лотка приведена в документе 18. 4. Объем работ приведен на одну оголовочную часть трубы. 5. Расход металла на трубу приведен в документе 19.

МГК∩ПРОЕКТ

Изм.	Кол.уч	Лист	№док	Подпись	Дата

Оголовочная часть трубы. Тип 2. Гофр 125х26

1–1	1 1
f	f f
e e	e d e
Гравийно-песчаная подушка	Гравийно-песчаная подушка

1-1
f d la d la e
Гравийно-песчаная подушка_

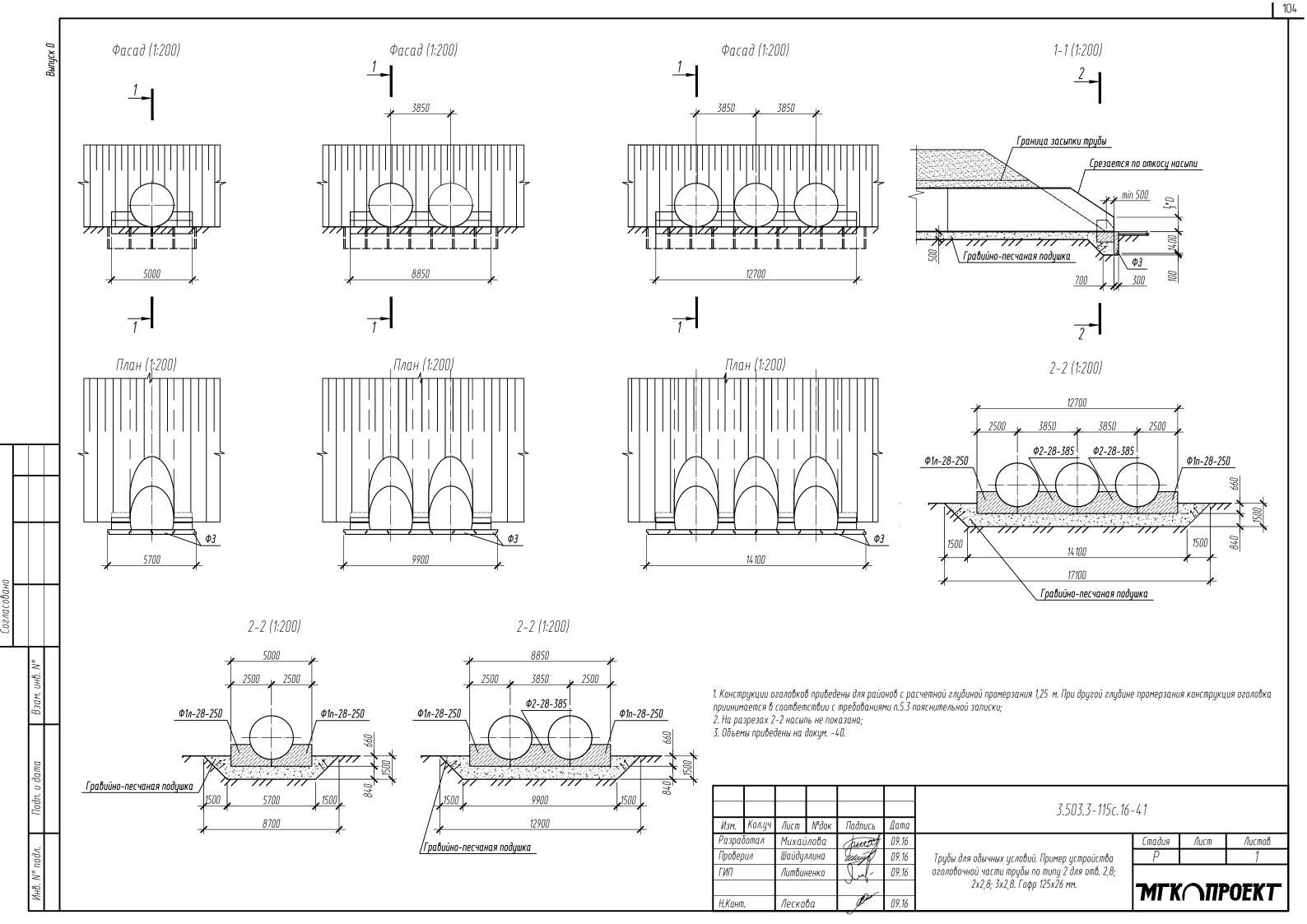
	а, мм	Ь, мм	C, MM	d, мм	e, mm	f, mm	д, мм	k, mm	Кол-во блоков ФЭ шт.
1,5	4300	940	560	-	1650	3300	1800	400	3
2x1,5	7100	940	560	2550	1650	5850	1800	400	5
3x1,5	8500	940	560	2550	1650	8400	1800	400	6
1,8	4300	940	560	-	1900	3800	1800	400	3
2x1,8	7100	940	560	2850	1900	6650	1800	400	5
3x1,8	9900	940	560	2850	1900	9500	1800	400	7
2,0	4300	940	560	-	2000	4000	1800	400	3
2x2,0	7100	940	560	3050	2000	7050	1800	400	5
3x2,0	11300	940	560	3050	2000	10100	1800	400	8
2,2	4400	940	560	-	2200	4400	1750	450	3
2x2,2	8500	940	560	3250	2200	7650	1750	450	6
3x2,2	11300	940	560	3250	2200	10900	1750	450	8
2,5	5700	840	660	-	2350	4 700	1700	500	4
2x2,5	8500	840	660	3550	2350	8250	1700	500	6
3x2,5	12700	840	660	3550	2350	11800	1700	500	9
2,8	5700	840	660	-	2500	5000	1700	500	4
2x2,8	9900	840	660	3850	2500	8850	1700	500	7
3x2,8	14 100	840	660	3850	2500	12700	1700	500	10
3,0	5700	840	660	-	2700	5400	1700	500	4
2x3,0	9900	840	660	4050	2700	9450	1700	500	7
3x3,0	14 100	840	660	4050	2700	13500	1700	500	10

- 1. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка приинимается в соответствии с требованиями п.5.3 пояснительной записки; 2. На разрезах 1-1 насыпь не показана; 3. Объемы приведены на 2 листе данного документа.

							3.503.3-115c.16-	-40			
	Изм.	Кол.уч	Лист	№док	Подпись	Дата					
Γ	Разрач	δοπαл	Михай	ілова	puring	09.16		Стадия	Лист	Листов	
	Провер	верил Шайдулли		верил Шайдуллина	ллина	Mais	09.16	Схема труб для обычных условий. Основные размеры	Р	1	2
	ГИП /		Литвиненко 🛴		Jul-	09.16	для устройства оголовочной части трубы по типу 2.				
					6.6		Гофр 125х26	MEK		OEKT	
	Н.Конп	٦.	Леско	ва	. /	09.16		**** **		OLN I	

	=	
	ì	
	č	
c	Š	2

	Ведомость объемов работ на оголовочную часть трубы. Гофр 125x26. Тип 2								
Отв.трубы, м	Отсыпка гравийно- песчаной подушки, м ³	Рытье котлована, м ³	Установка блоков экрана. Бетон В20, м ³	Установка блоков фундамента. Бетон В20, м ³	Обратная засыпка блоков экрана, м ³				
1,5	12,6	21,8	1,80	2,90	7,2				
2x1,5	17,6	32,3	3,00	5,00	10,6				
3x1,5	19,3	37,5	3,50	7,10	12,4				
1,8	12,2	21,8	1,80	3,30	7,2				
2x1,8	17,1	32,3	3,00	5,70	10,6				
3x1,8	21,9	42,8	4,10	8,10	14,1				
2	12,1	21,8	1,80	3,50	7,2				
2x2,0	16,8	32,3	3,00	6,10	10,6				
3x2,0	24,9	48,0	4,70	8,60	15,8				
2,2	12,1	22,1	1,80	4,20	7,3				
2x2,2	19,8	37,5	3,50	7,10	12,4				
3x2,2	24,4	48,0	4,70	9,90	15,8				
2,5	14,4	27,0	2,40	4,90	8,9				
2x2,5	18,4	37,5	3,50	8,40	12,4				
3x2,5	25,7	53,3	5,30	11,90	17,6				
2,8	14,2	27,0	2,40	6,40	8,9				
2x2,8	21,3	42,8	4,10	10,80	14,1				
3x2,8	28,4	58,5	5,90	15,10	19,3				
3	13,9	27,0	2,40	7,60	8,9				
2x3,0	20,8	42,8	4,10	12,60	14,1				
3x3,0	27,8	58,5	5,90	17,70	19,3				


Граница засып	ки трубы
	Срезается по откосу насыпи
	Граница подсчета
	объемов работ тіп 500
/// /// /// /// /// Гравийно-песчаная подушка	φ3 700 300

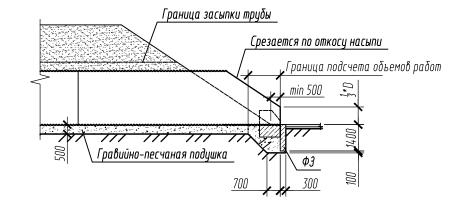
одн	ая ведомость объемов р ослойным цинковым покр	оытием. Гофр 125х26.	Tun 2
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, п
1,5	11,3	9,2	0,1
2x1,5	22,7	18,4	0,2
3x1,5	33,8	27,5	0,3
1,8	13,5	11,0	0,1
2x1,8	27,2	22,0	0,2
3x1,8	40,7	32,9	0,3
2,0	15,1	12,1	0,1
2x2,0	30,2	24,5	0,3
3x2,0	45,2	36,7	0,4
2,2	16, 1	13,1	0,1
2x2,2	32,2	26,1	0,2
3x2,2	48,3	39,2	0,4
2,5	17,9	14,5	0,1
2x2,5	35,5	28,9	0,3
3x2,5	53,4	43,4	0,4
2,8	19,9	16,2	0,1
2x2,8	39,8	32,3	0,3
3x2,8	59,8	48,5	0,4
3.0	21,4	17,3	0,2
2x3,0	42,7	34,7	0,3
3x3,0	64,1	51,9	0,5

	184 4	> =		
	W /	N III	POE	
IVII	N.	3111		N I

						Лист
					3.503.3-115c.16-40	2
Кол.уч	Лист	№док	Подпись	Дата		Ζ

^{1.} Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе - 17; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ - 19.

Отв.трубы D, м	а, мм	b, мм	C, MM	d, мм	e, mm	f, mm	д, мм	k, mm	Кол-во блоков ФЗ шт.
2,0	4300	940	560	-	2050	4 100	1800	400	3
2x2,0	8500	940	560	3100	2050	7200	1800	400	6
3x2,0	11300	940	560	3100	2050	10300	1800	400	8
2,2	4400	940	560	-	2250	4500	1750	450	3
2x2,2	8500	940	560	3300	2250	7800	1750	450	6
3x2,2	11300	940	560	3300	2250	11100	1750	450	8
2,5	5700	840	660	-	2400	4800	1700	500	4
2x2,5	8500	840	660	3600	2400	8400	1700	500	6
3x2,5	12700	840	660	3600	2400	12000	1700	500	9
2,8	5700	840	660	-	2550	5100	1700	500	4
2x2,8	9900	840	660	3900	2550	9000	1700	500	7
3x2,8	14 100	840	660	3900	2550	12900	1700	500	10
3,0	5700	840	660	-	2600	5200	1700	500	4
2x3,0	9900	840	660	4 100	2600	9300	1700	500	7
3x3,0	14 100	840	660	4 100	2600	13400	1700	500	10

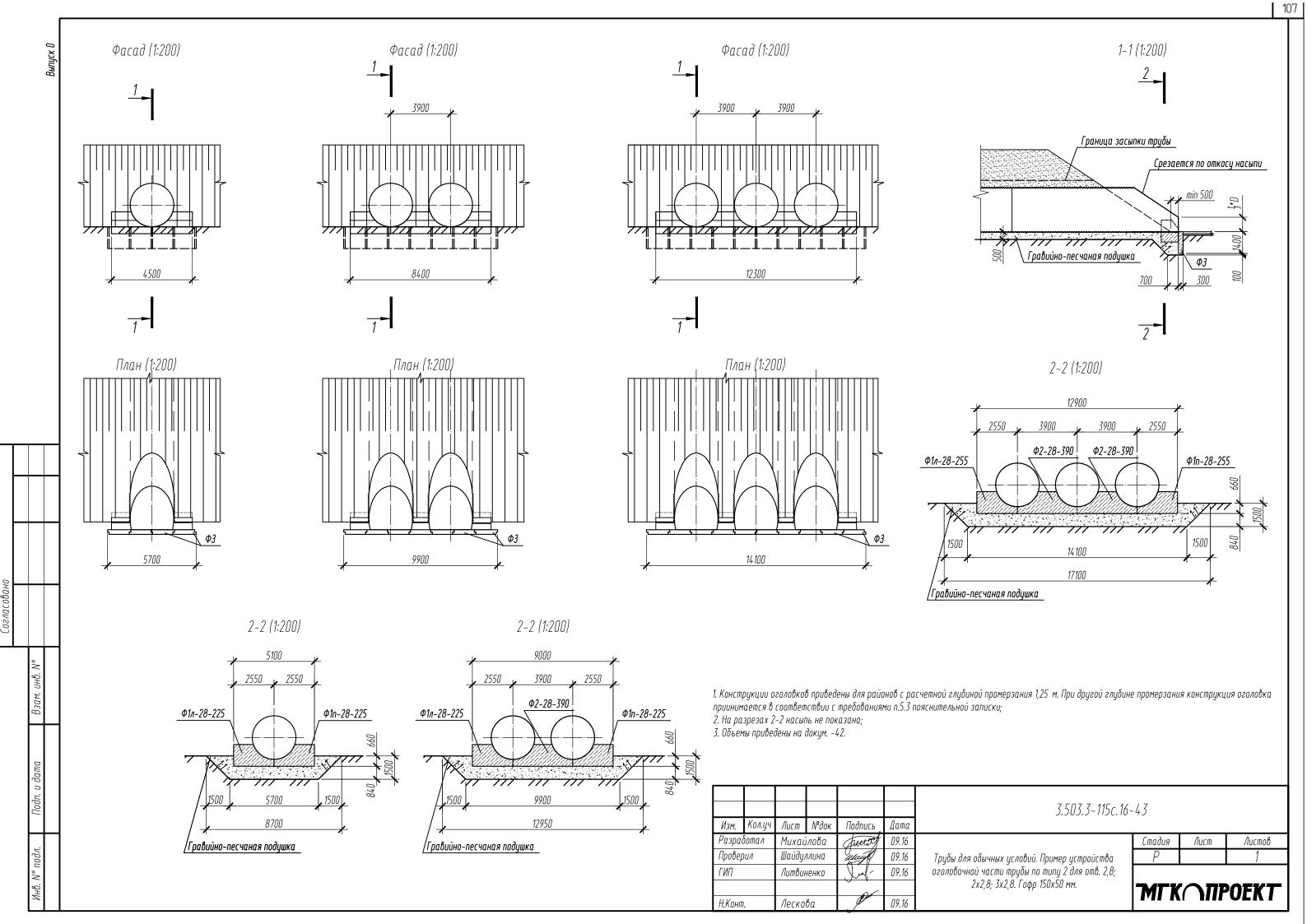

- 1. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка приинимается в соответствии с требованиями п.5.3 пояснительной записки; 2. На разрезах 1-1 насыпь не показана; 3. Объемы приведены на 2 листе данного документа.

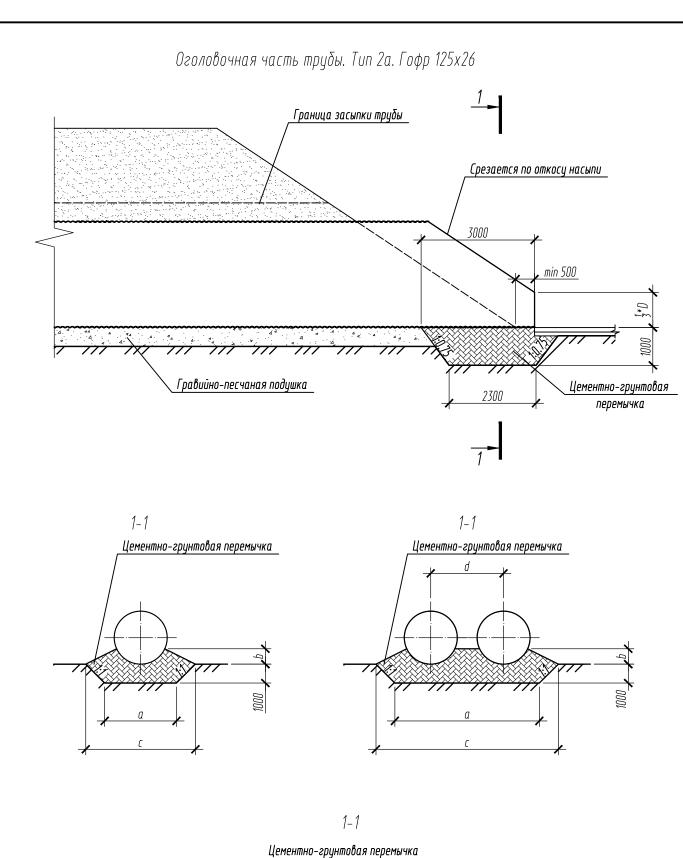
						3.503.3-115c.16-	-42		
Изм.	Кол.уч	Nucm	№док	Подпись	Дата				
Разрад	<i>Ботал</i>	Михай	ілова	hung	09.16		Стадия	Лист	Листов
Провер	υЛ	Шайдул	1ЛИНО.	Mary	09.16	Схема труб для обычных условий. Основные размеры	Р	1	2
ГИП		Литвин	ненко	July	09.16	для устройства оголовочной части трубы по типу 2.			
						Гофр 150х50	MEK	′\ПЕ	OEKT
Н.Конт		Леско	ва	P. Marie	09.16		****		ULN I

	_
	7
	2
	S
١	_

	Ведомость объе	мов работ на оголово	чную часть трубы. Гос	фр 150x50. Tun 2	
Отв.трубы D, м	Отсыпка гравийно- песчаной подушки, м ³	Рытье котлована, м ³	Установка блоков экрана. Бетон В20, м ³	Установка блоков фундамента. Бетон В20, м ³	Обратная засыпка блоков экрана, м ³
2	12.0	21.8	1.77	3.00	7.2
2x2,0	16.7	32.3	2.95	5.80	10.6
3x2,0	25.5	48.0	4.72	8.50	15.8
2.2	12.0	22.1	1.77	3.70	7.3
2x2,2	19.7	37.5	3.54	6.70	12.4
3x2,2	24.2	48.0	4.72	9.70	15.8
2.5	14.4	27.0	2.36	4.40	8.9
2x2,5	18.3	37.5	3.54	8.10	12.4
3x2,5	25.6	53.3	5.31	11.90	17.6
2.8	14.1	27.0	2.36	5.50	8.9
2x2,8	21.2	42.8	4.13	10.10	14.1
3x2,8	28.3	58.5	5.90	14.70	19.3
3	14.0	27.0	2.36	6.50	8.9
2x3,0	20.9	42.8	4.13	11.80	14.1
3x3,0	27.9	58.5	5.90	17.20	19.3

дополнашельнах	ведомость работ на ог цинковым покрытием	голооочную часть тр 1. Гофр 150x50. Tun 2	уоы с оонослоанын
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, к
2,0	15,55	14,02	0,13
2x2,0	31,12	28,04	0,25
3x2,0	48,77	42,07	0,38
2,2	16,64	15,00	0,13
2x2,2	33,29	30,00	0,25
3x2,2	49,93	44,99	0,37
2,5	18,38	16,54	0,14
2x2,5	36,75	33,10	0,27
3x2,5	55,13	49,66	0,41
2,8	20,57	18,55	0,14
2x2,8	41,16	37,08	0,27
3x2,8	61,74	55,62	0,41
3.0	22,05	19,87	0,15
2x3,0	44,10	39,73	0,31
3x3,0	66,15	59,60	0,46




- 1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности труб; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе 18; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ 19.

МГК ПРОЕКТ

Кол.цч	Nucm	№док	Подпись	Дата

3.503.3-115c.16-42

Отв.трубы D, м	a, mm	Ь, мм	C, MM	d, mm
1,5	2500	450	4500	-
2x1,5	5100	450	7100	2550
3x1,5	7600	450	9600	2550
1,8	2800	540	4800	-
2x1,8	5650	540	7650	2850
3x1,8	8500	540	10500	2850
2,0	3000	600	5000	-
2x2,0	6100	600	8100	3050
3x2,0	9100	600	11100	3050
2,2	3200	660	5200	-
2x2,2	6500	660	8500	3250
3x2,2	9700	660	11700	3250
2,5	3500	750	5500	-
2x2,5	7100	750	9100	3550
3x2,5	10600	750	12600	3550
2,8	3800	810	5800	-
2x2,8	7650	810	9650	3850
3x2,8	11500	810	13500	3850
3,0	4000	870	6000	-
2x3,0	8050	870	10050	4050
3x3,0	12100	870	14 100	4050

1. Оголовки по типу 2а применяются при наличии в основании глинистых грунтов; 2. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка приинимается в соответствии с требованиями п.5.4 пояснительной записки; 3. На разрезах 1-1 насыпь не показана; 4.Объемы приведены на 2 листе данного документа.

Провец ГИП		Шайдул Литвинен	1лина	assign June	09.16 09.16	Схема труб для обычных условий. Основные размеры для устройства оголовочной части трубы по типу 2a. Гофр 125x26	Р	1	POEKT
_ '				Junio J May 1		Схема труб для обычных условий. Основные размеры	Стадия Р	Лист 1	Листов 2
Изм. Разра	Кол.уч Ботал	Лист Михай	№док	Подпись	Дата 09.16		Cmadua	/luc m	Листов
						3.503.3-115c.16-44			

		3x1,5	34,8	2
		1,8	16,8	
		2x1,8	28,1	
		3x1,8	39,4	Ź
		2,0	18,2	
		2x2,0	30,5	
		3x2,0	42,4	-
		2,2	19,5	
		2x2,2	32,8	
		3x2,2	45,6	
		2,5	21,7	
		2x2,5	36,2	
		3x2,5	50,3	
		2,8	23,6	
		2x2,8	39,1	
		3x2,8	54,6	
	1	3,0	25,1	
		2x3,0	41,5	
		3x3,0	57,9	-

Ведомость объемов работ на оголовочную часть трубы. Гофр 125x26. Tun 2a

Устройство

14,9

25,1

Граница засыпки трубы

1:0.75

2300

Гравийно-песчаная подушка

Срезается по откосу насыпи

Граница подсчета объемов работ

Цементно-грунтовая

перемычка

Отв.трубы, м

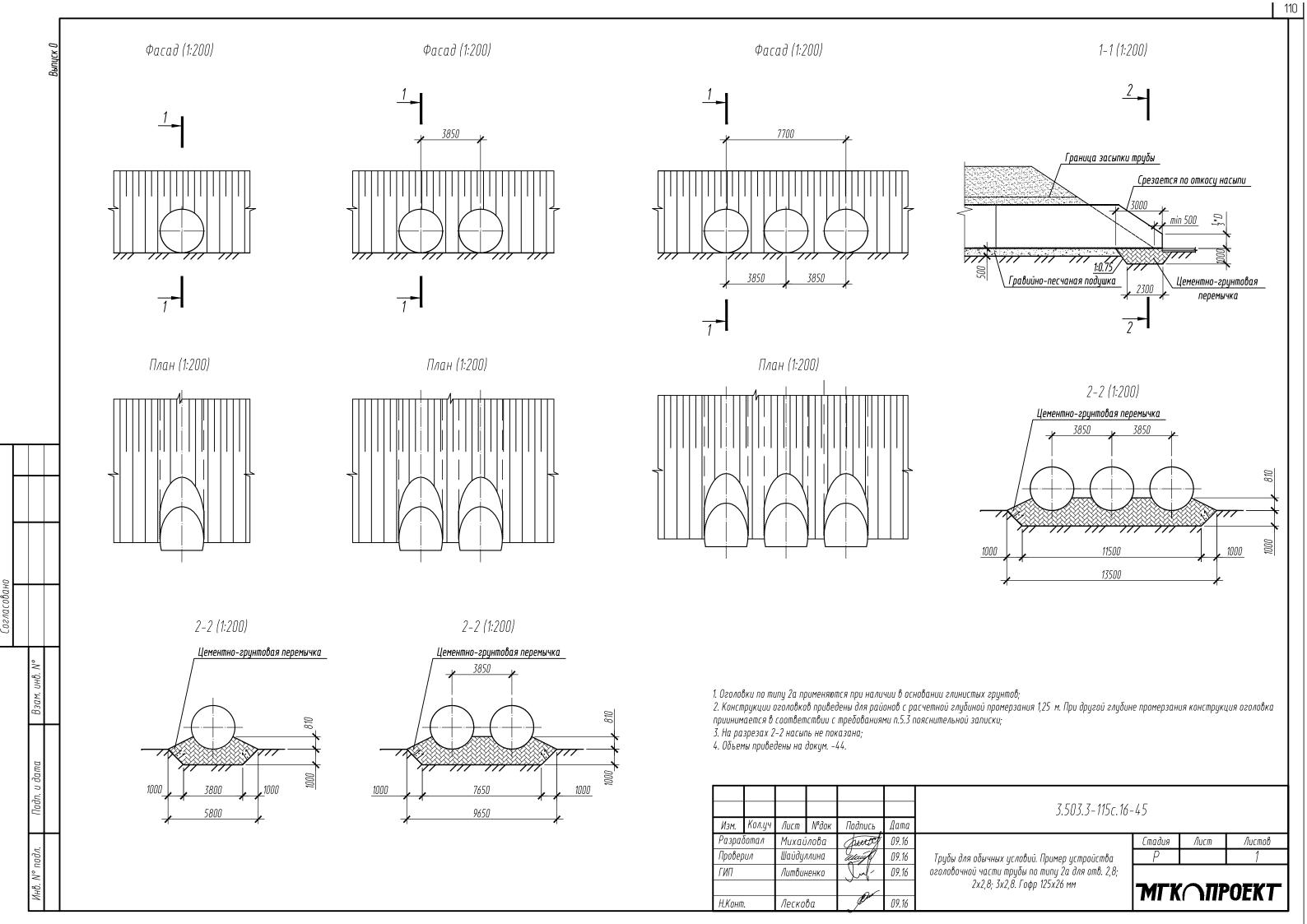
1,5

2x1,5

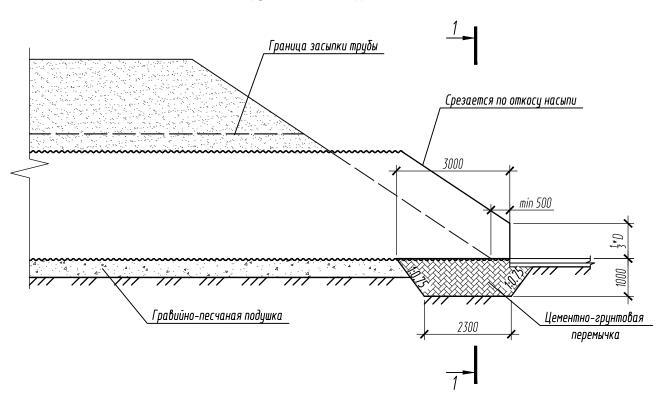
цементно-грунтовой Рытье котлована, м³ перемычки, м³

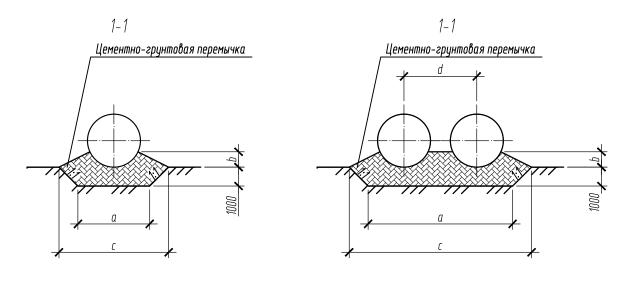
10,5

18,3


Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотко м ³
1,5	18,9	15,3	0,2
2x1,5	37,8	30,6	0,3
3x1,5	56,4	45,9	0,5
1,8	22,5	18,3	0,2
2x1,8	45,3	36,6	0,4
3x1,8	67,8	54,9	0,5
2,0	25,2	20,1	0,2
2x2,0	50,4	40,8	0,4
3x2,0	75,3	61,2	0,6
2,2	27,6	22,5	0,2
2x2,2	55,2	44,7	0,4
3x2,2	82,8	67,2	0,6
2,5	31,5	25,5	0,2
2x2,5	62,7	51,0	0,5
3x2,5	94,2	76,5	0,7
2,8	35,1	28,5	0,2
2x2,8	70,2	57,0	0,5
3x2,8	105,6	85,5	0,7
3.0	37,8	30,6	0,3
2x3,0	75,3	61,2	0,5
3x3,0	113,1	91,5	0,8

1. Иоъем рафот по истроистои			
		а нарижнои поберхности г	


^{1.} Ооъем радот по устроистоу азоляции приоеден при устроистое ее только на наружной подерхности труды; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе - 17; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ - 19.


МГК∩ПРОЕКТ

						<i>3.503.</i> .
3M.	Кол.уч	Лист	№док	Подпись	Дата	

Оголовочная часть трубы. Тип 2а. Гофр 150х50

1-1	
Цементно-грунтовая перемычка	
a	1000
C	

•			ти трубы. Гофр 150x50. Т	
Отв.трубы D, м	a, mm	Ь, мм	C, MM	d, mm
2,0	3000	600	5000	-
2x2,0	6150	600	8100	3100
3x2,0	9200	600	11100	3100
2,2	3200	660	5200	-
2x2,2	6550	660	8500	3300
3x2,2	9800	660	11700	3300
2,5	3500	750	5500	-
2x2,5	7150	750	9100	3600
3x2,5	10700	750	12600	3600
2,8	3800	810	5800	-
2x2,8	7700	810	9650	3900
3x2,8	11600	810	13500	3900
3,0	4000	870	6000	-
2x3,0	8100	870	10050	4 100
3x3,0	12200	870	14 100	4 100

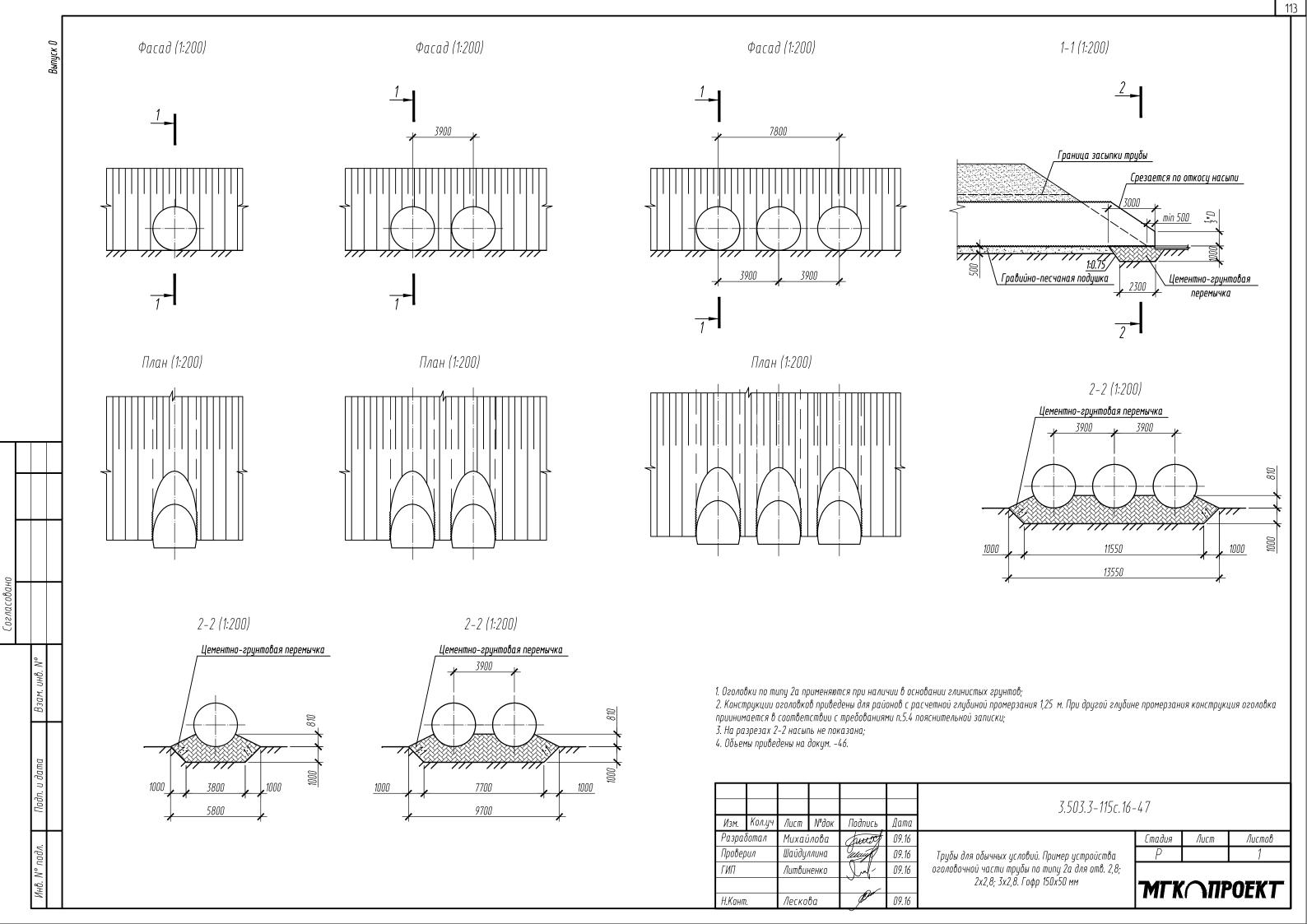
- 1. Оголовки по типу 2а применяются при наличии в основании глинистых грунтов; 2. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 1,25 м. При другой глубине промерзания конструкция оголовка приинимается в соответствии с требованиями п.5.4 пояснительной записки; 3. На разрезах 1-1 насыпь не показана; 4. Объемы приведены на 2 листе данного документа.

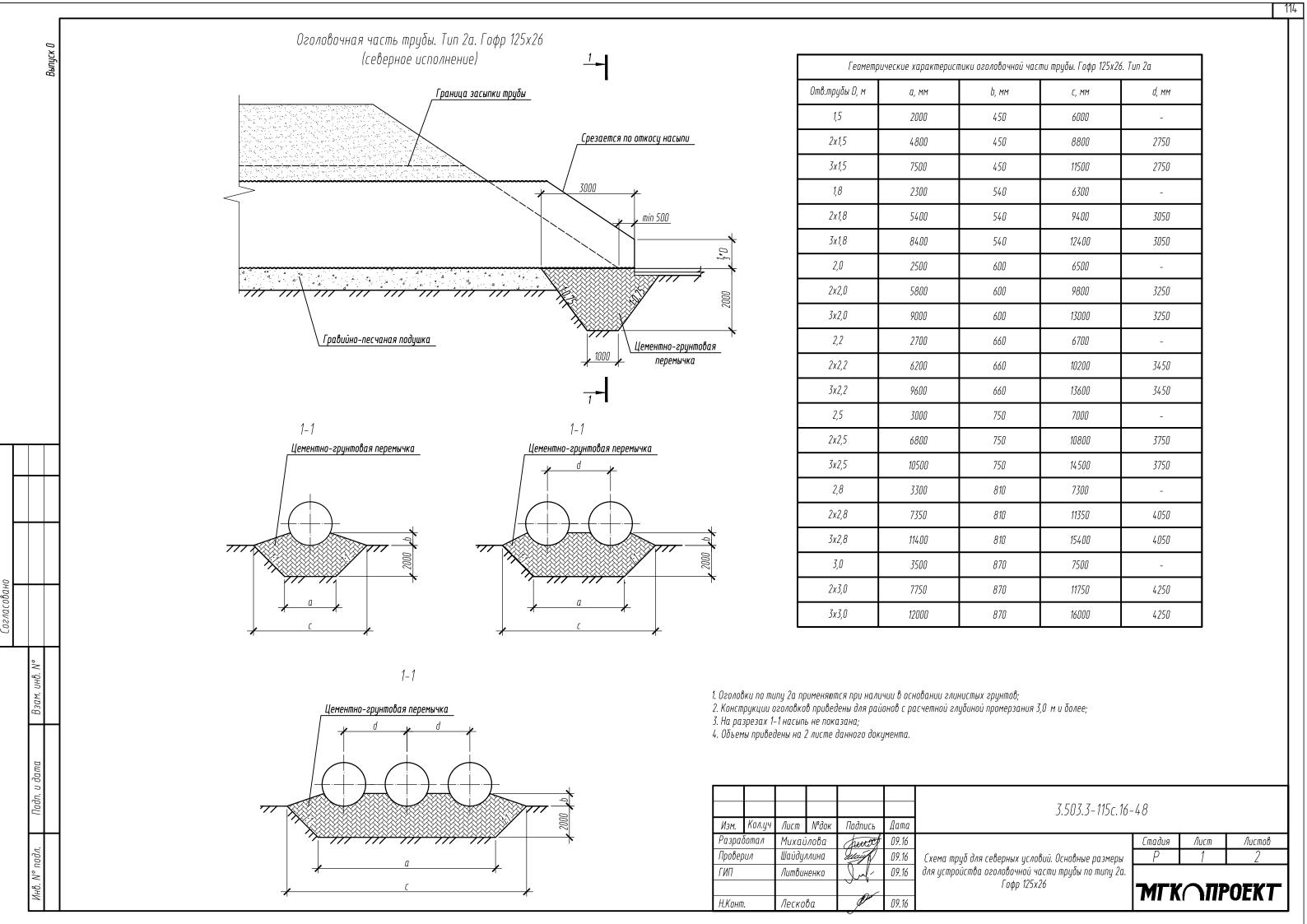
						3.503.3-115c.16-46				
Изм.	Кол.уч	Nucm	№док	Подпись	Дата					
Разра	δοπαл	Михай	ілова	hurs	09.16		Стадия	Лист	Листов	
Проверил Шайдуллина ГИП Литвиненко		Шайдул	ллина	May	09.16	Схема труб для обычных условий. Основные размеры	Р	1	2	
		ченко		09.16	для устройства оголовочной части трубы по типу 2а.					
			V 1		Гофр 150х50мм	МГК ПРОЕКТ				
Н.Конп	٦.	Леско	ва	Report .	09.16		INI NI MITULNI			

C	\sim
	×
	\simeq
	5
	₹
	α

Ведомость объемов	работ на оголовочную	часть трубы. Тип 2а
Отв.трубы, м	Устройство цементно-грунтовой перемычки, м ³	Рытье котлована, м ³
2	18,2	12
2x2,0	30,7	21,5
3x2,0	42,9	30,6
2,2	19,5	12,6
2x2,2	33	22,7
3x2,2	46	32,4
2,5	21,7	13,5
2x2,5	36,4	24,5
3x2,5	50,7	35,1
2,8	23,6	14,4
2x2,8	39,3	26,1
3x2,8	55,1	37,8
3	25,1	15
2x3,0	41,7	27,3
3x3,0	58,4	39,6

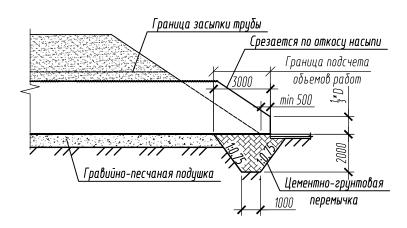
Граница засыпки трубы
Срезается по откосу насыпи
Граница подсчета объемов работ
min 500 ===
Гравийно-песчаная подушка ф3
700


	ая ведомость объемов р слойным цинковым покр		
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м ^з
2,0	25,92	23,37	0,21
2x2,0	51,87	46,74	0,42
3x2,0	77,82	70,11	0,63
2,2	28,53	25,71	0,21
2x2,2	57,06	51,42	0,42
3x2,2	85,59	77,13	0,63
2,5	32,43	29,19	0,24
2x2,5	64,86	58,41	0,48
3x2,5	97,29	87,63	0,72
2,8	36,30	32,73	0,24
2x2,8	72,63	65,43	0,48
3x2,8	108,96	98,16	0,72
3.0	38,91	35,07	0,27
2x3,0	77,82	70,11	0,54
3x3,0	116,73	105, 18	0,81


1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе - 18; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ - 19.

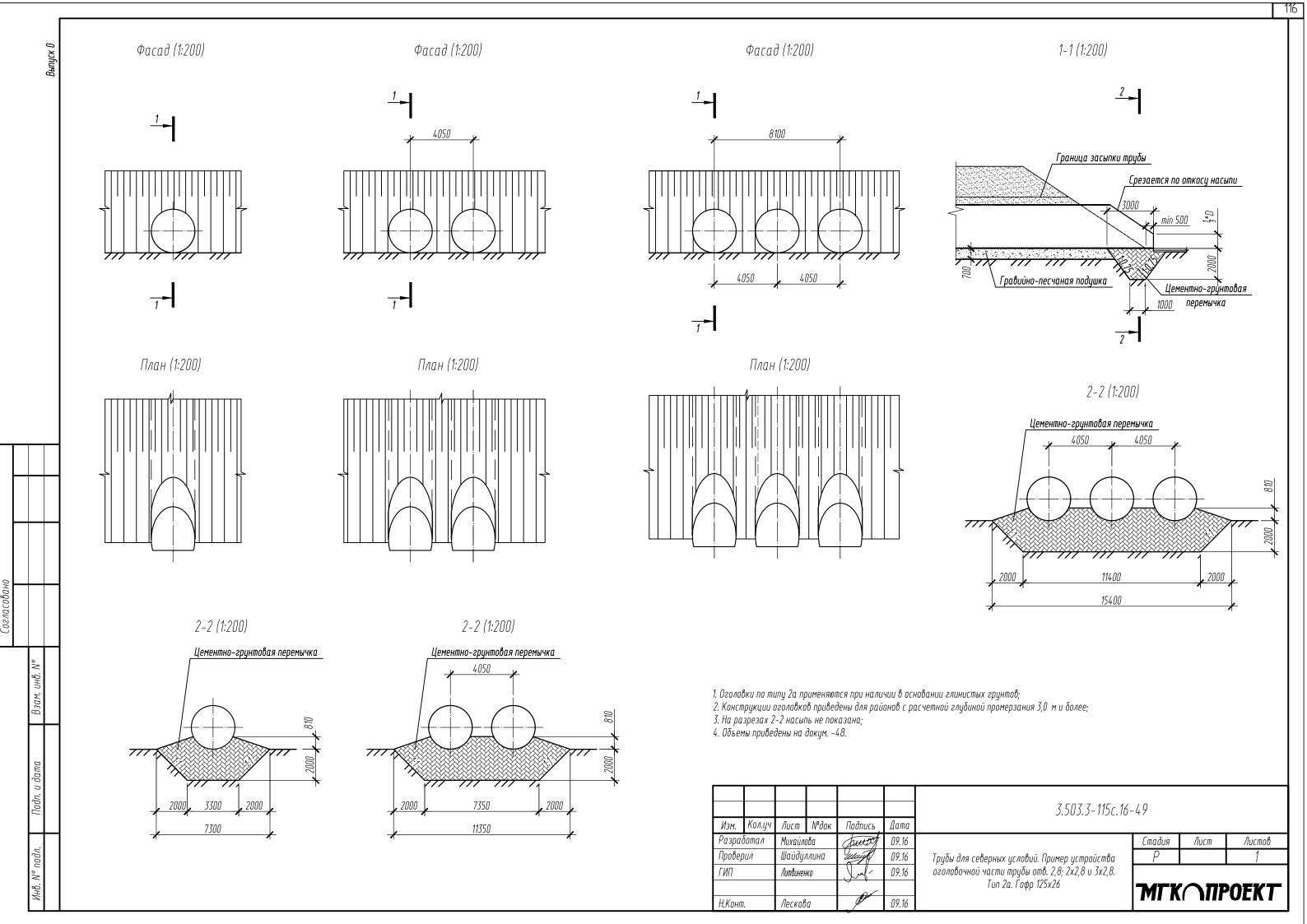
МГК ПРОЕКТ

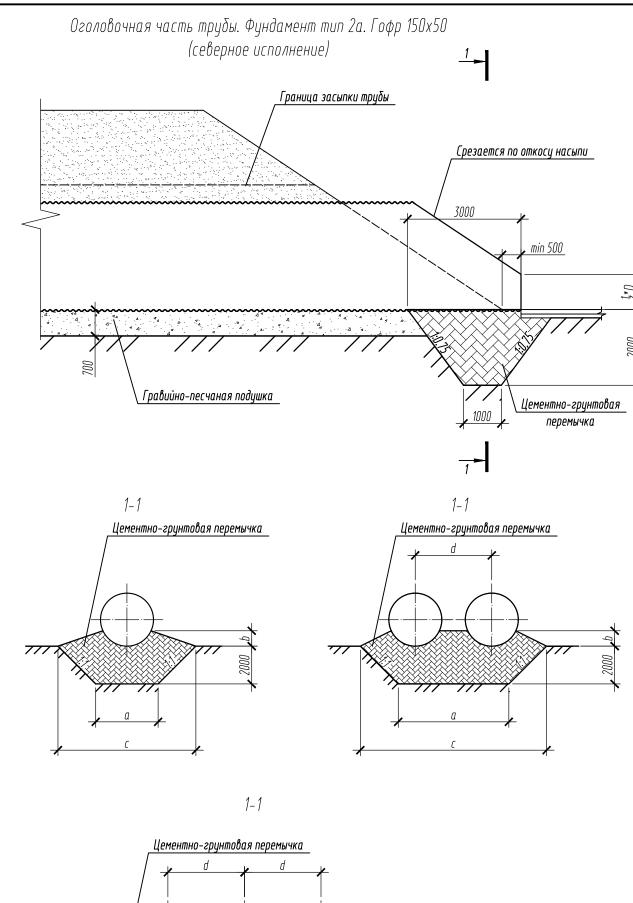
Изм.	Кол.уч	Лист	№док	Подпись	Дата


3.503.3-115c.16-46

0		
гозласорани		
	§. N°	

	емов работ на оголовоч Гофр 125x26. Tun 2a	
Отв.трубы, м	Устройство цементно-грунтовой перемычки, м ³	Рытье котлована, м ³
1,5	30,9	24
2x1,5	51,2	40,8
3x1,5	70,9	57
1,8	34	25,8
2x1,8	56,7	44,4
3x1,8	78,7	62,4
2,0	36,1	27
2x2,0	60,4	46,8
3x2,0	84	66
2,2	38,3	28,2
2x2,2	64,2	49,2
3x2,2	89,3	69,6
2,5	41,7	30
2x2,5	69,9	52,8
3x2,5	97,4	75
2,8	44,7	31,8
2x2,8	74,8	56,1
3x2,8	104,9	80,4
3,0	47,1	33
2x3,0	78,7	58,5
3x3,0	110,4	84




Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	цинка. Гофр 125x26. Т Устройство обмазочной гидроизоляции, м ²	Устройство защитного лотка, м
1,5	18,9	15,3	0,2
2x1,5	37,8	30,6	0,3
3x1,5	56,4	45,9	0,5
1,8	22,5	18,3	0,2
2x1,8	45,3	36,6	0,4
3x1,8	67,8	54,9	0,5
2,0	25,2	20,1	0,2
2x2,0	50,4	40,8	0,4
3x2,0	75,3	61,2	0,6
2,2	27,6	22,5	0,2
2x2,2	55,2	44,7	0,4
3x2,2	82,8	67,2	0,6
2,5	31,5	25,5	0,2
2x2,5	62,7	51,0	0,5
3x2,5	94,2	76,5	0,7
2,8	35,1	28,5	0,2
2x2,8	70,2	57,0	0,5
3x2,8	105,6	85,5	0,7
3.0	37,8	30,6	0,3
2x3,0	75,3	61,2	0,5
3x3,0	113,1	91,5	0,8

1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе -17; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ - 19.

МГК ПРОЕКТ

Изм.	Кол.уч	Лист	№док	Подпись	Дата

Отв.трубы D, м	a, mm	Ь, мм	C, MM	d, мм
2,0	2500	600	6500	-
2x2,0	5850	600	9800	3300
3x2,0	9100	600	13000	3300
2,2	2700	660	6700	-
2x2,2	6250	660	10200	3500
3x2,2	9700	660	13600	3500
2,5	3000	750	7000	-
2x2,5	6850	750	10800	3800
3x2,5	10600	750	14500	3800
2,8	3300	810	7300	-
2x2,8	7400	810	11350	4 100
3x2,8	11500	810	15400	4 100
3,0	3500	870	7500	-
2x3,0	7800	870	11750	4300
3x3,0	12100	870	16000	4300

- 1. Оголовки по типу 2а применяются при наличии в основании глинистых грунтов; 2. Конструкции оголовков приведены для районов с расчетной глубиной промерзания 3,0 м и более; 3. На разрезах 1-1 насыпь не показана; 4. Объемы приведены на 2 листе данного документа.

Цементно-грунтовая перемычка_	

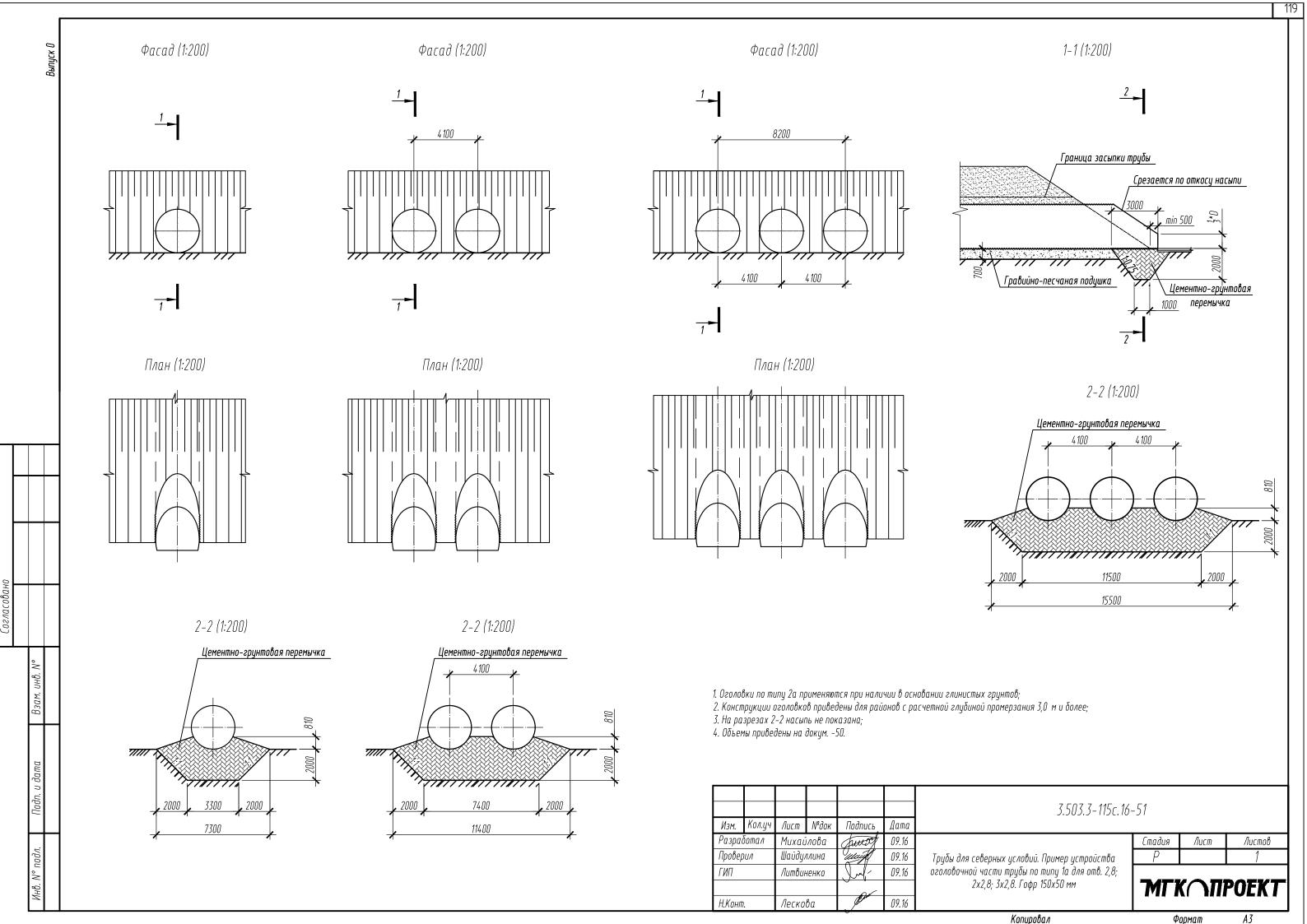
_								
							3.503.3-115c.16-	-50
	Изм.	Кол.уч	Лист	№док	Подпись	Дата		
ſ	Разрад	<i>ботал</i>	Михай	ілова	Juice	09.16		Ста
ſ	Провер	υЛ	Шайдул	1ЛИНА	May	09.16	Схема труб для северных условий. Основные размеры	ļ ļ
ſ	ГИП		Литвин	ченко	Jul-	09.16	для устройства оголовочной части трубы по типу 2а.	
I							Гофр 150х50	M
ĺ	Н.Конт).	Леско	ва	JE NO	09.16		""

Стадия Лист Листов

МГКПРОЕКТ

¢	=	٥	
	¥		
	₹	j	٠
	Ş	Ę	
C	Ē	Š	

	Γοφρ 150x50. Tun 2a	1
Отв.трубы, м	Устройство цементно-грунтовой перемычки, м ³	Рытье котлована, к
2,0	36,1	27
2x2,0	60,8	47,1
3x2,0	84,7	66,6
2,2	38,3	28,2
2x2,2	64,6	49,5
3x2,2	90,1	70,2
2,5	41,7	30
2x2,5	70,3	53,1
3x2,5	98,1	75,6
2,8	44,7	31,8
2x2,8	75,2	56,4
3x2,8	105,7	81
3,0	47,1	33
2x3,0	79,1	58,8
3x3,0	111,2	84,6


Граница засы	пки трубы_
	Срезается по откосу насыпи
	Граница подсчета 3000 объемов работ тіп 500
Гравийно-песчаная подушка	<u>Цементно-грунтовая</u> 1000 перемычка

	я ведомость одъемов р слойным цинковым покр		
Отв.трубы, м	Оборачивание трубы геотекстилем, м ²	Устройство обмазочной	Устройство защитного лотка, м ^з
2,0	25,92	23,37	0,21
2x2,0	51,87	46,74	0,42
3x2,0	77,82	70,11	0,63
2,2	28,53	25,71	0,21
2x2,2	57,06	51,42	0,42
3x2,2	85,59	77,13	0,63
2,5	32,43	29,19	0,24
2x2,5	64,86	58,41	0,48
3x2,5	97,29	87,63	0,72
2,8	36,30	32,73	0,24
2x2,8	72,63	65,43	0,48
3x2,8	108,96	98,16	0,72
3.0	38,91	35,07	0,27
2x3,0	77,82	70,11	0,54
3x3,0	116,73	105,18	0,81

1. Объем работ по устройству изоляции приведен при устройстве ее только на наружной поверхности трубы; 2. Устройство защитного лотка из асфальтобетона допускается только для труб с однослойным цинковым покрытием. При устройстве лотка из полимербетонных и бетонных блоков объемы не изменяются; 3. Конструкция защитного лотка приведена в документе -18; 4. Объем работ приведен на одну оголовочную часть трубы; 5. Расход металла на трубу приведен в документ - 19.

MIK \ \ IIPOEKT

						Nucm
					3.503.3-115c.16-50	2
л.уч	Лист	№док	Подпись	Дата		Ζ

Трубы в узких логах и прорезях. Схема расположения І (засыпка труб в прогале насыпи).

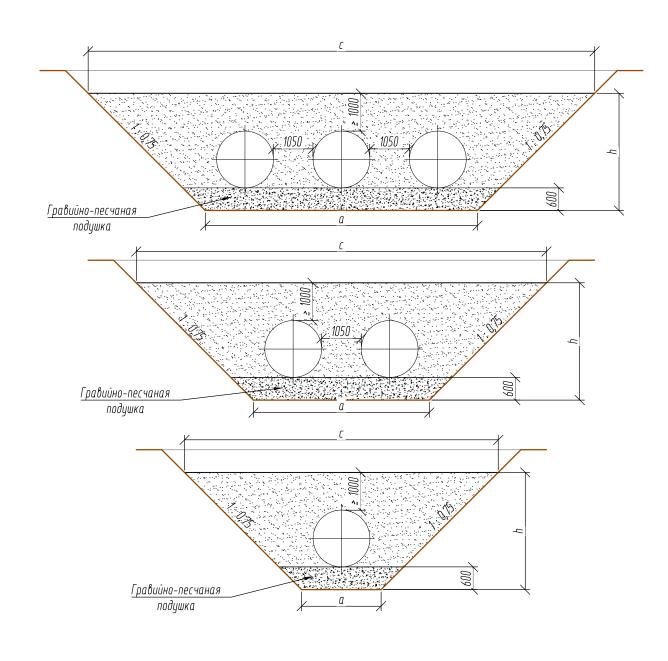
толщиной 0,2 м (превышение грунта на одной из сторон допускается не более 0,2 м).

2. Уплотнение грунта засыпки производится грунтоуплотняющими машинами, в непосредственной близости от трубы – ручными механизированными инструментами после отсыпки и разравнивания каждого слоя с обеих сторон трубы. Степень уплотнения грунта должна быть не менее 0,95 или 0,98 его максимальной стандартной плотности в зависимости от модуля деформации грунтов засыпки.

- 3. Наклон стенок прорези зависит от характеристик грунтов и принятых мер по их укреплению и не должен быть круче 1:0,75.
- 4. При проектировании труб в узких логах контуры засыпки трубы принимаются в соответствии с настоящим документом.

Отв.трубы D, м	а, мм	b, mm	C, MM	П, ММ	һ, мм
0,5	1500	8500	11500	540	1500
2x0,5	3050	10050	13050	570	1500
3x0,5	4600	11600	14600	570	1500
0,8	1800	8800	12400	860	1800
2x0,8	3650	10650	14250	910	1800
3x0,8	5500	12500	16100	910	1800
1,0	2000	9000	13000	730	2000
2x1,0	4050	11050	15050	840	2000
3x1,0	6100	13100	17100	840	2000
1,2	2200	9200	13600	910	2200
2x1,2	4450	11450	15850	1125	2200
3x1,2	6700	13700	18100	1125	2200
1,5	2500	9500	14500	1310	2500
2x1,5	5050	12050	17050	1500	2500
3x1,5	7600	14600	19600	1500	2500
1,8	2800	9800	15400	1650	2800
2x1,8	5650	12650	18250	1875	2800
3x1,8	8500	15500	21100	1875	2800
2,0	3000	10000	16000	2000	3000
2x2,0	6050	12950	18950	3120	3000
3x2,0	9100	15900	21900	3120	3000
2,2	3200	12200	18600	2020	3200
2x2,2	6450	15450	21850	2240	3200
3x2,2	9700	18700	25100	2240	3200
2,5	3500	12500	19500	2350	3500
2x2,5	7050	16050	23050	2600	3500
3x2,5	10600	19600	26600	2600	3500
2,8	3700	12800	20400	2680	3800
2x2,8	7450	16650	24300	2960	3800
3x2,8	11175	20500	28100	2960	3800
3.0	4000	13000	21000	2900	4000
2x3,0	8060	17050	25050	3200	4000
3x3,0	12900	21100	28200	3200	4000

Изм.	Кол.уч	Nucm	№док	Подпись	Дата			
Разрад	ботал	Михайлова		тал Михайлова		Junos	09.16	
Проверил		Шайдуллина		Mais	09.16	Тр		
ГИП		Литвиненко		Jul	09.16			
				De la constantina della consta				
Н.Конт.		Лескова			09.16			
				W /				


3.503.3-115c.16-52

рубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 125х26 мм.

Стадия	Лист	Листов
Р		1

МГКПРОЕКТ

Трубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 125x26 мм.

- 1. Засыпку трубы слудет производить равномерно с обеих сторон трубы горизонтальными слоями толщиной 0,2 м (превышение грунта на одной из сторон допускается не более 0,2 м).
- 2. Уплотнение грунта засыпки производится грунтоуплотняющими машинами, в непосредственной близости от трубы ручными механизированными инструментами после отсыпки и разравнивания каждого слоя с обеих сторон трубы. Степень уплотнения грунта должна быть не менее 0,95 или 0,98 его максимальной стандартной плотности в зависимости от модуля деформации грунтов засыпки.
- 3. Наклон стенок прорези зависит от характеристик грунтов и принятых мер по их укреплению и не должен быть круче 1:0,75.
- 4. При проектировании труб в узких логах контуры засыпки трубы принимаются в соответствии с настоящим документом.

Отв.трубы D, м	а, мм	C, MM	d, mm	h, mm
0,5	1500	4350	-	1500
2x0,5	3050	5900	2050	1500
3x0,5	4600	7450	3600	1500
0,8	1800	5100	-	1800
2x0,8	3650	7150	2650	1800
3x0,8	5500	9200	4500	1800
1,0	2000	5600	-	2000
2x1,0	4050	7650	3050	2000
3x1,0	6100	9900	5100	2000
1,2	2200	6100	-	2200
2x1,2	4450	8350	3450	2200
3x1,2	6700	10600	5700	2200
1,5	2500	6850	-	2500
2x1,5	5050	9400	4050	2500
3x1,5	7600	11950	6600	2500
1,8	2800	7600	-	2800
2x1,8	5650	10450	4650	2800
3x1,8	8500	13300	7500	2800
2,0	3000	8100	-	3000
2x2,0	6050	11150	4950	3000
3x2,0	9100	14200	7900	3000
2,2	3200	8675	-	3200
2x2,2	6450	11920	5450	3200
3x2,2	9700	15170	8700	3200
2,5	3500	9500	-	3500
2x2,5	7050	13050	6050	3500
3x2,5	10600	16600	9600	3500
2,8	3700	10150	-	3800
2x2,8	7450	13900	6650	3800
3x2,8	11175	17620	9600	3800
3.0	4000	10820	-	4000
2x3,0	8060	14880	7050	4000
3x3,0	12900	19720	11000	4000

Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разрад	<i>Ботал</i>	Михай	ілова	hurs	09.16	
Провер	υЛ	Шайдул	1ЛИНА	May	09.16	
ГИП		Литвен	ненко	Jul-	09.16	
Н.Конт		Леско	ва	1 Police	09.16	

Трубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 125х26 мм.

Стадия	Лист	Листов
Р		1
	_	
MIK		POEKT

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы,
0,5	0,8	0,8	14,8
2x0,5	1,4	1,4	16,9
3x0,5	2,0	2,0	19,1
0,8	0,9	0,9	18,6
2x0,8	1,6	1,6	21,4
3x0,8	2,4	2,4	24,2
1,0	1,0	1,0	18,6
2x1,0	1,8	1,8	24,5
3x1,0	2,6	2,6	27,8
1,2	1,0	1,0	24,0
2x1,2	1,9	1,9	27,8
3x1,2	2,8	2,8	31,6
1,5	1,2	1,2	28,2
2x1,5	2,2	2,2	32,8
3x1,5	3,2	3,2	37,5
1,8	1,3	1,3	32,7
2x1,8	2,4	2,4	38,2
3x1,8	3,6	3,6	43,6
2,0	1,4	1,4	35,9
2x2,0	2,6	2,6	41,6
3x2,0	3,8	3,8	47,3
2,2	1,6	1,6	32,8
2x2,2	3,0	3,0	52,1
3x2,2	4,6	4,6	58,7
2,5	2,0	2,0	51,1
2x2,5	3,8	3,8	58,6
3x2,5	5,6	5,6	66,1
2,8	2,1	2,1	56,9
2x2,8	4,0	4,0	65,5
3x2,8	5,8	5,8	73,9
3.0	2,5	2,5	60,9
2x3,0	4,8	4,8	70,1
3x3,0	7,4	7,4	75,7

Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
0,5	1,0	6,4	4,6
2x0,5	1,9	10,0	6,8
3x0,5	2,9	13,6	8,9
0,8	1,2	8,7	6,3
2x0,8	2,4	14,1	9,4
3x0,8	3,6	19,5	12,6
1,0	1,3	10,4	7,4
2x1,0	2,5	16,3	10,7
3x1,0	3,9	22,7	14,4
1,2	1,4	12,3	8,7
2x1,2	2,8	19,2	12,5
3x1,2	4,1	26,2	16,3
1,5	1,6	15,4	10,7
2x1,5	3,1	24,1	15,3
3x1,5	4,7	32,8	19,9
1,8	1,8	18,9	12,9
2x1,8	3,5	29,6	18,3
3x1,8	5,2	40,2	23,8
2,0	1,3	20,7	14,4
2x2,0	3,7	33,4	20,4
3x2,0	5,6	45,5	26,4
2,2	2,1	24,3	16,3
2x2,2	4,0	37,9	22,9
3x2,2	6,0	51,5	29,5
2,5	2,3	28,9	19,2
2x2,5	4,4	45,0	26,7
3x2,5	6,5	61,0	34,2
2,8	2,4	33,1	21,6
2x2,8	4,7	51,3	29,7
3x2,8	6,9	69,3	37,7
3.0	2,6	37,3	24,2
2x3,0	5,1	57,9	33,4
3x3,0	7,9	82,3	45,7

Изм.	Кол.уч	Лист	№док	Подпись	Дата	
Разрад	Разработал [ілова	hursel	09.16	
Провер	Проверил		1ЛИНА	May	09.16	 т.
ГИП		Литвин	ненко	Jul-	09.16	Tį
Н.Конт).	Леско	ва	JE MA	09.16	

Трубы в узких логах и прорезях. Ведомости объемов работ по схеме I и схеме II . Гофр 125х26 мм

Стадия	Nucm	Листов
Р		1

^{3.} Объем работ по устройству котлована по схеме I рассчитан на высоту е; 4. Объем работ по устройству котлована по схеме II рассчитан на высоту h.

Отв.трубы D, м	a, mm	b, mm	C, MM	П, ММ	h, mm
2,0	3000	10000	16000	2000	3000
2x2,0	6100	13000	19000	3120	3000
3x2,0	9200	16000	22000	3120	3000
2,2	3200	12200	18600	2020	3200
2x2,2	6500	15500	21900	2240	3200
3x2,2	9800	18800	25200	2240	3200
2,5	3500	12500	19500	2350	3500
2x2,5	7100	16100	23100	2600	3500
3x2,5	10700	19700	26700	2600	3500
2,8	3700	12800	20400	2680	3800
2x2,8	7500	16700	24350	2960	3800
3x2,8	11275	20600	28200	2960	3800
3.0	4000	13000	21000	2900	4000
2x3,0	8110	17100	25100	3200	4000
3x3,0	13000	21200	28300	3200	4000

- слоя с обеих сторон трубы. Степень уплотнения грунта должна быть не менее 0,95 или 0,98 его максимальной стандартной плотности в зависимости от модуля деформации грунтов засыпки.
- 3. Наклон стенок прорези зависит от характеристик грунтов и принятых мер по их укреплению и не должен быть круче 1:0,75.
- 4. При проектировании труб в узких логах контуры засыпки трубы принимаются в соответствии с настоящим документом.

		н Лист №док				
Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разработал Проверил		Михай	ілова	June	09.16	
		Шайдуллина				Mary
ГИП		Литвин	ненко	Jul	09.16	Ι (засыпка труб в прогал
				06		Гофр 150х50 мг
Н.Конт		Леско	ва		09.16	
•				•		•

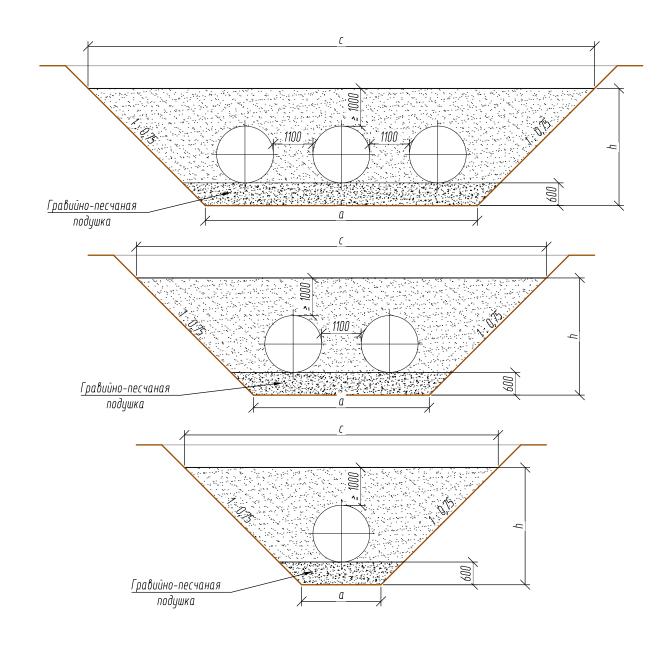

Стадия

Схема расположения але насыпи).

МГКПРОЕКТ

/lucm

Листов

Отв.трубы D, м	а, мм	C, MM	h, mm
2,0	3000	8100	3000
2x2,0	6100	11200	3000
3x2,0	9200	14300	3000
2,2	3200	8675	3200
2x2,2	6500	11970	3200
3x2,2	9800	15270	3200
2,5	3500	9500	3500
2x2,5	7100	13100	3500
3x2,5	10700	16700	3500
2,8	3700	10150	3800
2x2,8	7500	13950	3800
3x2,8	11275	17720	3800
3.0	4000	10820	4000
2x3,0	8110	14930	4000
3x3,0	13000	19820	4000

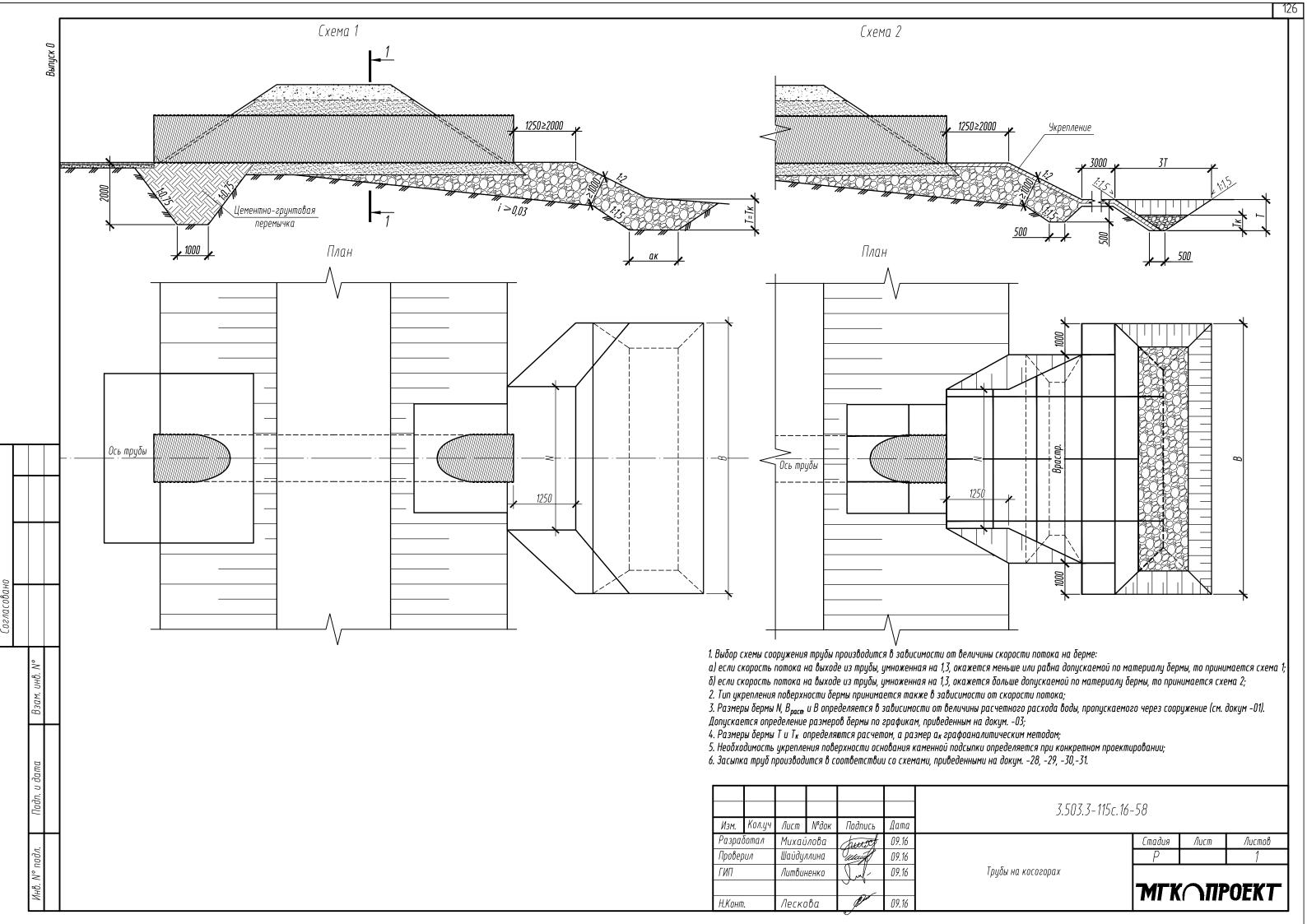
- 1. Засыпку трубы слудет производить равномерно с обеих сторон трубы горизонтальными слоями толщиной 0,2 м (превышение грунта на одной из сторон допускается не более 0,2 м).
- 2. Уплотнение грунта засыпки производится грунтоуплотняющими машинами, в непосредственной близости от трубы ручными механизированными инструментами после отсыпки и разравнивания каждого слоя с обеих сторон трубы. Степень уплотнения грунта должна быть не менее 0,95 или 0,98 его максимальной стандартной плотности в зависимости от модуля деформации грунтов засыпки.
- 3. Наклон стенок прорези зависит от характеристик грунтов и принятых мер по их укреплению и не должен быть круче 1:0,75.
- 4. При проектировании труб в узких логах контуры засыпки трубы принимаются в соответствии с настоящим документом.

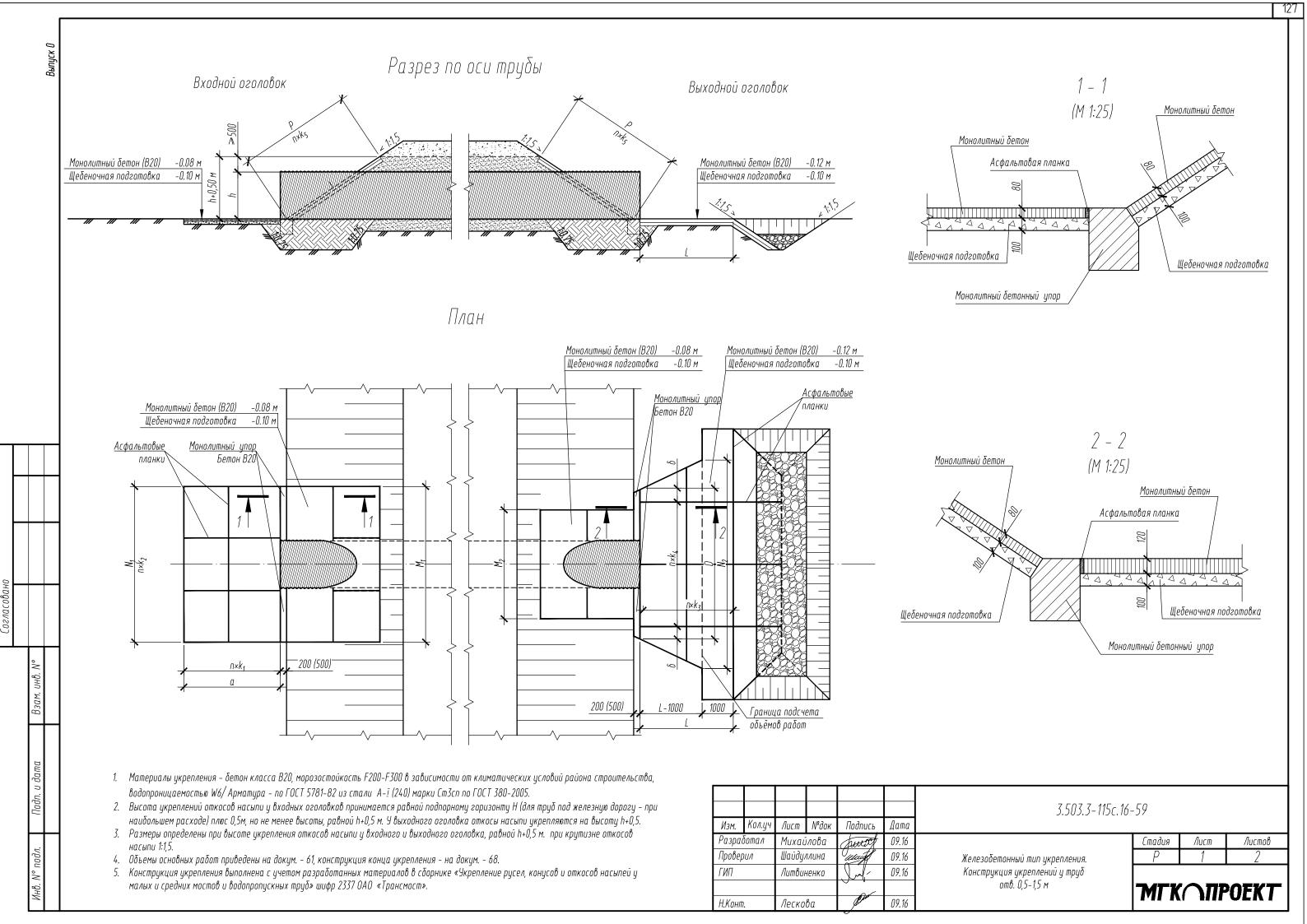
						l
Изм.	Кол.уч	Лист №док		Подпись	Дата	
Разрад	ботал	Михайлова		hursel	09.16	
Провер	UЛ	Шайдуллина		May	09.16	
ГИП		Литвин	ненко	July	09.16	
Н.Конт.		Леско	ва	Je har	09.16	
	Разрад Провер ГИП	Разработал Проверил ГИП	Разработал Михай Проверил Шайдул ГИП Литвин	Разработал Михайлова Проверил Шайдуллина ГИП Литвиненко	Разработал Михайлова рисоў Проверил Шайдуллина ГИП Литвиненко	Разработал Михайлова рилу 09.16 Проверил Шайдуллина 09.16 ГИП Литвиненко 09.16

Трубы в узких логах и прорезях. Схема расположения I (засыпка труб в прогале насыпи). Гофр 150x50 мм.

	Стадия	/lucm	/Іистов
,	Р		1
			OTVT
	MI K	a Alle	'UEK I

0		
Согласовано		
	N°	

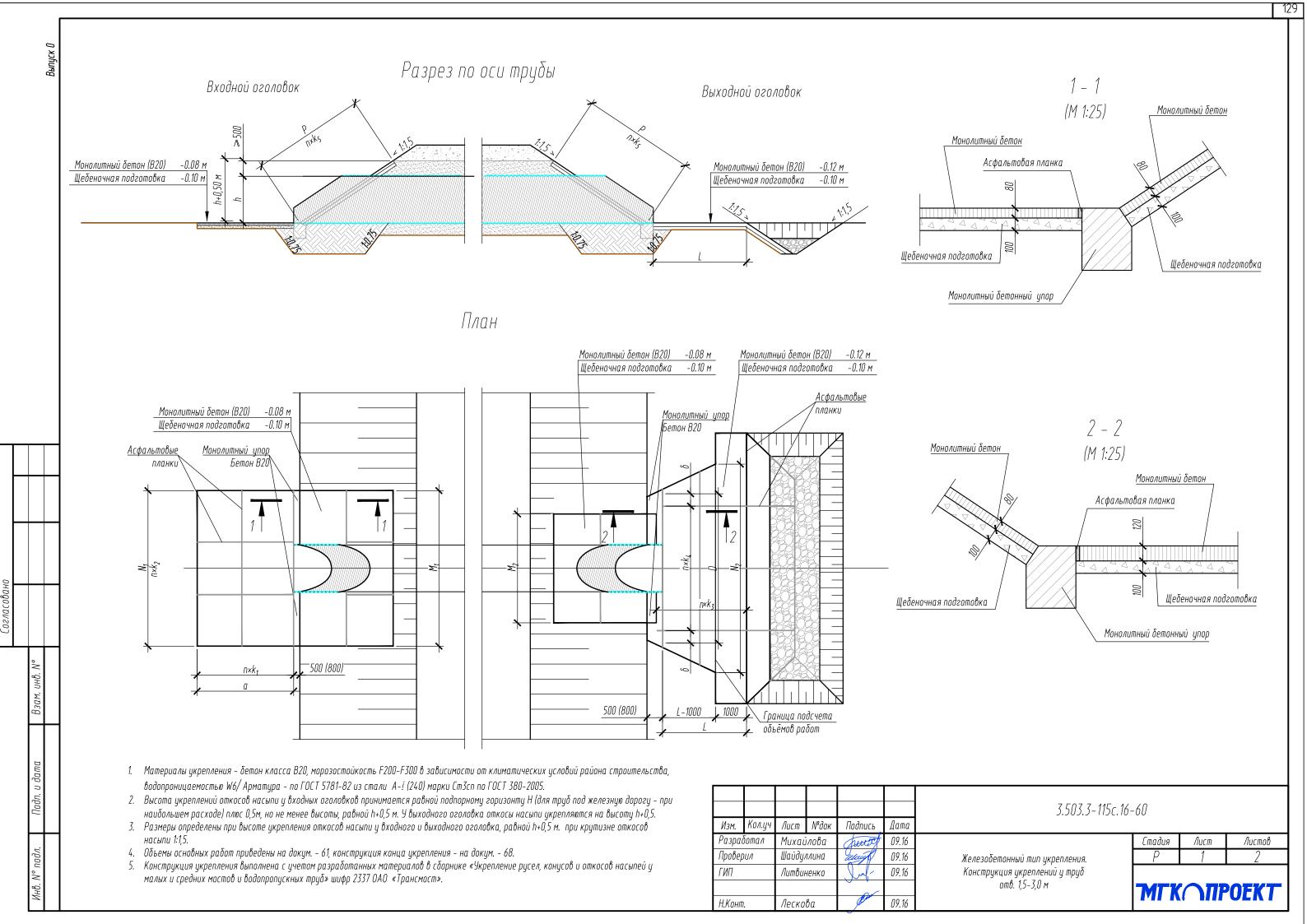

	Ведомость объемов работ н	на 1 п.м. трубы. Схема I.	
Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³
2,0	1,4	1,4	35,9
2x2,0	2.7	2.7	41.7
3x2,0	4.0	4.0	47.4
2,2	1,6	1,6	32,8
2x2,2	3.1	3.1	52.2
3x2,2	4.8	4.8	58.8
2,5	2,0	2,0	51,1
2x2,5	3.9	3.9	58.7
3x2,5	5.8	5.8	66.3
2,8	2,1	2,1	56,9
2x2,8	4.1	4.1	65.6
3x2,8	6.0	6.0	74.0
3.0	2,5	2,5	60,9
2x3,0	4.9	4.9	70.2
3x3,0	7.6	7.6	75.8


Отв.трубы, м	Отсыпка гравийно-песчаной подушки, м ³	Рытье котлована, м ³	Засыпка трубы, м ³ 14,4		
2,0	1,3	20,7			
2x2,0	3.8	33.5	20.5		
3x2,0	5.7	45.7	26.6		
2,2	2,1	24,3	16,3		
2x2,2	4.1	38.0	23.0		
3x2,2	6.1	51.7	29.6		
2,5	2,3	28,9	19,2		
2x2,5	4.5	45.1	26.8		
3x2,5	6.7	61.2	34.3		
2,8	2,4	33,1	21,6		
2x2,8	4.8	51.4	29.8		
3x2,8	7.0	69.5	37.8		
3.0	2,6	37,3	24,2		
2x3,0	5.2	58.0	33.5		
3x3,0	8.1	82.5	45.8		

- 1. Смотреть совместно с документами -55, 56; 2. Объем работ по устройству котлована по схеме I рассчитан на высоту е; 3. Объем работ по устройству котлована по схеме II рассчитан на высоту h.

						3.503.3-115c.16-57					
Изм.	Кол.уч	Лист	№док	Подпись	Дата						
Разрац	ботал	Михай	ілова	hursel	09.16	Стадия Лист		Лист	Листов		
Провер	ОИЛ	Шайдул	1ЛИНА	Mary	09.16	Tours, Russian page and Dodonostic Strain	Р		1		
ГИП		Литвин	ненко		09.16	груоы о узких логах и прорезях. Веоомости ооъемоо работ по схеме I и схеме II . Гофр 150х50 мм	Трубы в узких логах и прорезях. Ведомости объемов				
						ot		NFKT			
Н.Конт	7.	Леско	ва	JE July	09.16				ULN I		

)		
Согласовано		
	Взам. инв. №	
	Подп. и дата	
	N° подл.	



Геометрические характеристики

Отверстие трубы, м	Расход на одно очко.		Вхо	дной оголо	вок				Выходн	ой оголо	вок					h+0,5
трусы, т	Q, м ³ /сек	а, м	п×k ₁ , шт×м	N ₁ M	пхк ₂ , шт×м	M ₁ ,	D, м	пхk ₄ , шт×м	δ, M	N ₂	L, M	пхk ₃ , шт×м	M ₂ ,	Р, м	пхк ₅ , шт×м	, M
0,5	до 0,26	1,5	1×1,5	4,00	2×2,0	4,0	3,4	2×1,5	0,15	4,5	1,5	1×1,30	2,5	1,80	1 × 1,80	1,00
2×0,5	до 0,26	1,5	1×1,5	5,55	3×1,87	5,6	4,8	2×2,0	0,35	9,2	2,1	1×1,80	4,1	1,80	1 × 1,80	1,00
3×0,5	до 0,26	1,5	1×1,5	7,10	4×1,8	7,2	6,2	2×2,0	0,05	14,0	2,6	2×1,15	5,6	1,80	1 × 1,80	
0,8	до 0,84	2,0	1×2,0	4,30	3×1,43	4,3	3,4	3×2,0	0,15	4,9	1,5	1×1,20	2,8	2,34	1 × 2,34	1,30
2×0,8	до 0,84	2,0	1×2,0	6,15	3×2,03	6,1	4,8	2×1,5	0,35	9,5	2,1	1×1,80	4,6	2,34	1 × 2,34	1,30
3×0,8	до 0,84	2,0	1×2,0	8,00	4×1,98	7,9	6,2	2×2,0	0,15	14,3	2,6	2×1,15	6,4	2,34	1 × 2,34	1,30
1,0	∂o 1,75	3,0	2×1,5	4,50	3×1,50	4,5	3,4	4×1,8	0,15	5,4	2,0	1×2,00	3,0	2, 70	2 × 1,35	1,50
2×1,0	до 1,75	3,0	2×1,5	6,55	4×1,63	6,5	6,2	2×1,5	0,05	10, 1	2,8	2×1,40	5,0	2, 70	2 × 1,35	1,50
3×1,0	∂о 1,75	3,0	2×1,5	8,60	5×1,17	8,5	7,6	4×1,8	0,15	15,0	3,4	2×1,70	7,0	2, 70	2 × 1,35	1,50
1,2	до 2,78	3,0	2×1,5	4,70	3×1,57	4,7	3,4	2×2,0	0,35	5,9	2,4	1×2,10	3,2	3,06	2 × 1,53	1, 70
2×1,2	до 2,78	3,0	2×1,5	6,95	4×1,75	7,0	6,2	3×2,0	0,05	11,4	3,4	2×1,55	5,5	3,06	2 × 1,53	1, 70
3×1,2	до 2,78	3,0	2×1,5	9,20	5×1,84	9,2	9,0	4×2,0	0,45	16,9	4,1	2×1,90	7, 7	3,06	2 × 1,53	1, 70
1,5	до 3,45	3,0	2×1,5	5,00	3×1,67	5,0	4,8	2×2,0	0,35	6,7	3,0	2×1,50	3,5	3,60	2 × 1,80	2,00
1,5	3,55-5,0	3,0	2×1,5	٥,00	JX1,07	٥,٠	4,0	2 × 2,0	0,00	7,0	4,0	2×2,00	ر,د	3,00	2 × 1,00	2,00
2×1,5	до 3,45	3,0	2×1,5	7,55	4×1,87	7,5	7,6	3×2,0	0,05	13,0	4,2	2×2,10	6,0	3,60	2 × 1,80	2,00
2 × 1, J	3,55-5,0	3,0	2×1,5	7,00	4×1,07	۷,٦	7,0	J X Z , U	0,00	14,0	5,6	3×1,87	0,0	J, 00	2 7 1,00	2,00
3×1,5	∂o 3,45	3,0	2×1,5	10,10	5×2,00	10,0	9,0	4×2,0	0,45	19,5	5,1	3×1,70	8,5	3,60	2 × 1,80	2,00
ر,ا <i>ب</i> ر	3,55-5,0	3,0	2×1,5	10,10	J×2,00	10,0	3,0	4×2,0	0,45	21,3	6,8	4×1,70	0,5	3,00	2 7 1,00	2,00

МГК ПРОЕКТ

Изм	Коллич	Nucm	№док	Подпись	Пата

>	
<u>.</u>	
Š	
≅್	
<u>-</u>	
$\boldsymbol{\alpha}$	

Этверстие	Расход на		BXOO	ной оголо	DOK						Вых	одной ого	71000K				,	1, 0,
трубы, м	одно очко, Q, м³/сек	α,	п×k ₁ ,	N_1		xk_2 ,	M_1 ,	D,		nxk_4 ,	δ,	N ₂	L,	пхk _з ,	M_2 ,	Р, м	пхк ₅ , шт×м	h+0,5
	2, ,, ,, , , , , , , , , , , , , , , ,	М	шт×м	М	L	иm×м	М	М	ľ	ит×м	М	М	М	шт×м	М			
1,50	до 3,71	3,00	2×1,5	5,00	3	× 1,67	5,00	4,80	2	× 2,05	0,35	6,7	3,0	2 × 1,50	3,50	3,60	2 × 1,80	2,00
1,50	<i>3,81</i> –4, <i>7</i> 5	5,00	2,5	3,00		,,,,,,	2,00	1,00	_	2,03	0,33	7,0	4,0	2 × 2,00	3,30	5,00	2 ,,50	2,0
2×1,5	до 3,71	3,00	2×1,5	7,55	4	× 1,89	7,50	7,60	4	× 1,90	0,25	13,0	4,2	2 × 2,10	6,00	3,60	2 × 1,80	2,0
2,5	3,81-4,75	5,00	2,5	,,55		,,05	,,,,,,,,	7,00	Ĺ	,,,,,,	0,23	14,0	5,6	3 × 1,87	0,00	3,00	,,50	
3×1,5	до 3,71	3,00	2×1,5	10,10	6	× 1,68	10,00	9,00	5	× 1,80	0,65	19,5	5,1	3 × 1,70	8,50	3,60	2 × 1,80	2,0
	<i>3,81</i> –4, <i>7</i> 5			,,,,,		,,	,	.,	Ĺ	,,00	-,	21,3	6,8	3 × 2,27	-,20			_,-
1,80	до 5,85	3,50	2×1,75	5,30	3	× 1,77	5,30	4,80	3	× 1,60	0,35	7,4	3,6	2 × 1,80	3,80	4,14	3 × 1,38	2,3
.,	5,95-7,73	-/		-,		7	-,	.,	Ĺ	,,	-,	7,8	4,5	3 × 1,50		.,	,,	
2×1,8	до 5,85	3,50	2×1,75	8,15	5	× 1,63	8,20	7,60	4	× 1,90	0, 75	14,5	5,0	3 × 1,67	6, 70	4,14	3 × 1,38	2,3
,-	5,95-7,73	-/	- 7	-7		7	-/	.,,		7	-7	15,3	6,3	4 × 1,58	-,	.,,,,	,,	
3×1,8	до 5,85	3,50	2×1,75	11,00	6	× 1,83	11,00	10,40	5	× 2,08	0, 15	21,8	6,1	4 × 1,53	9,50	4,14	3 × 1,38	2,3
	5,95-7,73	-/		.,,		,,	,	,			-,	23,2	7, 7	4 × 1,93	.,	.,,	,,	
2,00	до 7,62	3,50	2×1,75	5,50	3	× 1,83	5,50	4,80	3	× 1,60	0,35	7,9	4,0	2 × 2,00	4,00	4,51	3 × 1,50	2,5
	7,72-10,37			-,		,,		,,		,,	-,	8,2	5,0	3 × 1,67	.,,	.,,	,,	
2×2,0	до 7,62	3,50	2×1,75	8,55	5	× 1,71	8,58	7,60	4	× 1,90	0,85	15,6	5,6	3 × 1,87	7,00	4,51	3 × 1,50	2,5
	7,72-10,37	,	,	,			,	,				16,3	7, 0	4 × 1,75	,	,		<u> </u>
3×2,0	до 7,62	3,50	2×1,75	11,60	6	× 1,93	11,50	11,80	6	× 1,97	0,35	23,4	6,8	4 × 1,70	10,00	4,51	3 × 1,50	2,5
	7,72-10,37		-			ľ						24,5	8,5	5 × 1,70	- 1			
2,20	до 9,67	3,50	2×1,75	5,70	3	× 1,90	5,70	4,80	3	× 1,60	0,35	7,9	4,4	3 × 1,47	4,20	4,87	3 × 1,62	2,7
	9,77-13,53											8,4	5,5	3 × 1,83				-
2×2,2	до 9,67	3,50	2×1,75	8,95	5	× 1,79	9,00	9,00	5	× 1,80	0,45	15,6	6,2	3 × 2,07	7,50	4,87	3 × 1,62	2,7
	9,77-13,53 do 9,67								\vdash			16,6 23,4	7, 0 7, 5	4 × 1,75 4 × 1,88				
3×2,2	9,77-13,53	3,50	2×1, 75	12,20	7	× 1,74	12,20	11,80	6	× 1,97	0,35	24,9	9,4	5 × 1,88	10,70	4,87	3 × 1,62	2,7
	∂o 13,31											9,3	5,1	3 × 1,70				1
2,50	13,41–18,0	3,50	2×1,75	6,00	3	× 2,00	6,00	6,20	4	× 1,55	0, 10	9,8	6,8	4 × 1,70	4,50	5,41	3 × 1,80	3,0
	∂o 13,31											18,5	7,0	4 × 1,75				
2×2,5	13,41-18,0	3,50	2×1,75	9,55	5	× 1,91	9,50	9,00	5	× 1,80	0,50	19,5	9,2	5 × 1,84	8,00	5,41	3 × 1,80	3,0
2 2 5	до 13,31	2.50	2 1 75	12 10	7	1 07	12.00	12 20	7	1.00	0.65	27,8	8,5	5 × 1,70	11 50	F / 1	2 100	2.0
3×2,5	13, 41–18, 0	3,50	2×1,75	13,10	7	× 1,87	13,00	13,20	7	× 1,89	0,65	29,5	11, 2	6 × 1,87	<i>11,50</i>	5,41	3 × 1,80	3,0
2,80	до 16,50	4,00	2×1,85	6,30	2	× 2,10	6,30	6,20	7	× 2,07	0, 10	9,6	5,6	3 × 1,87	4,80	5,95	4 × 1,49	3,3
2,00	16,6-23,84	4,00	2×1,05	0,50		2,10	0,50	0,20		2,07	0, 10	10, 1	7,1	4 × 1,79	4,00	3,73	4 ^ 1,47	٥,٥
2×2,8	до 16,50	4,00	2×1,85	10,15	5	× 2,03	10,15	10,40	6	× 1,73	0,20	19,1	7,6	5 × 1,53	8, 70	5,95	4 × 1,49	3,3
,-	16,6-23,84			, , ,		, , , ,	,				,	20,0	9,4	5 × 1,88				-/-
3×2,8	до 16,50	4,00	2×1,85	14,00	7	× 2,00	14,00	14,60	8	× 1,83	0,30	28,6	9,3	5 × 1,85	12,50	5,95	4 × 1,49	3,3
===	16,6-23,84		~~								9	30,1	11, 9	6 × 1,98	7			
3,00	∂o 19,50	4,00	2×1,85	6,60	4	× 1,65	6,60	6,20	3	× 2,07	0, 10	10,1	6,0	4 × 1,51	5,00	6,31	4 × 1,58	3,5
	19,60-28,32											10, 7 20, 3	7,8	4 × 1,95				
2×3,0	до 19,50 19,60-28,32	4,00	2×1,85	10,65	6	× 1,78	10,65	10,40	6	× 1,73	0,20	21,3	8,3 10,2	5 × 1,66 5 × 2,04	9, 10	6,31	4 × 1,58	3,5
	79,00-20,32 до 19,50								\vdash			30,5	10, 2	5 × 2,04				
3×3,0	19,60-28,32	4,00	2×1,85	14,70	7	× 2,10	14,70	14,60	8	× 1,83	0,30	31,9	12,9	7 × 1,85	13, 10	6,31	4 × 1,58	3,5

МГК ПРОЕКТ

Изм.	Кол.уч	Лист	№док	Подпись	Дата

	1																																		131
	0								Ryndunii	оголовок				0бъ	емы рабо	т на огол	овок				Выходной о	20.00804	e e								Всего				
	пуск (Σ	4K0,				Русло		DXOOHOU	JEUNUUK			Откосы						Русло		DBIXOUHUU U	EUNUUUK			Откосы				(бе	з устройсі	тва конца	укреплени	<i>(</i> R)		
	Вы	прубы,	дно оч	8		Монолит	пный бетон	. R20 м ³		M.	α		B20,		£	σ.		Моно лип	пный бетон	B20 m ³		m E	α		B20,		M.	α		Монол	100		Σ.		
		Отверстие п	Расход на одн О, м³/се	Площадь укрепления (планировка), м²	Щеδеночная подготовка, м³	укрепления	упоро	ов для повка повка	Арматура А-І, кг	4сфальтовые планки,	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	Монолитный бетон В2 М	Арматура А-1, кг	кфальтовые планки,	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	укрепления	тип оголо оголо	3 для	Арматура А-і, кг	ісфальтовые планки,	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	Монолитный бетон В2 м³	Арматура А-і, кг	кфальтовые планки,	Площадь укрепления (планировка), м²	Щеδеночная подготовка, м³	для оголовка од типа 1 и 2	для оголовка 3 ж типа 1a и 2a	Арматура А-І, кг	Асфальтовые планки,	Земляные работы, м ^з	
		0,5 2×0,5 3×0,5	до 0,26 до 0,26 до 0,26	6, 2 8, 5 10, 8	0,62 0,85 1,08	0,50 0,68 0,87	0,2 0,3 0,3	0,8 1,1 1,4	13, 7 18, 8 24, 0	0,1 0,1 0,1	6,5 8,7 10,9	0,66 0,87 1,09	0,53 0,70 0,87	14, 4 19, 3 24, 1	0,1 0,1 0,1	2,0 7,7 16,2	0,20 0,77 1,62	0, 24 0, 93 1, 94	0,2 0,2 0,3	0,5 0,8 1,1	4,4 17,1 35,9	0,1 0,1 0,2	3,8 6,0 8,0	0,38 0,60 0,80	0,31 0,48 0,64	8,4 13,3 17,7	0,1 0,1 0,1	18,4 30,8 45,8	1,9 3,1 4,6	2,0 3,3 4,9	2,9 4,7 6,9	40,9 68,4 101,6	0,4 0,4 0,5	1,5 2,9 4,9	
		0,8	до 0,84	8,9	0,90	0,72	0,3	0,9	19,8	0,1	8,3	0,83	0,67	18,3	0,1	2,1	0, 21	0, 25	0,3	0,6	4,6	0,1	4,7	0,48	0,38	10,5	0,1	24,0	2,4	2,6	3,4	53,3	0,4	2,0	
		2×0,8 3×0,8	до 0,84 до 0,84	12,6 16,3	1,27 1,64	1,01 1,31	0,1	1,2 1,6	28,0 36,2	0,1	10,7 13,1	1,07 1,31	0,86 1,05	23, 7 29, 0	0,1 0,1	7,9 16,4	0,79 1,64	0,95 1,97	0,1	0,9 1,3	17,5 36,4	0,2 0,3	7,2 9,6	0,72 0,96	0,58 0,77	15,9 21,2	0,1	38,3 55,4	3,9 5,6	3,6 5,4	5,6 8,0	85,0 122,9	0,5 0,6	3,7 5,9	
		1, 0 2×1, 0 3×1, 0	до 1,75 до 1,75 до 1,75	14,1 20,3 26,4	1,41 2,03 2,64	1, 13 1, 62 2, 12	0,3 0,2 0,3	0, 9 1, 3 1, 7	31,3 45,0 58,6	0,1 0,1 0,1	9,3 11,9 14,5	0,94 1,20 1,45	0, 75 0, 96 1, 16	20, 7 26, 4 32, 2	0, 1 0, 1 0, 1	4, 4 14, 7 27, 1	0,44 1,47 2,72	0,53 1,77 3,26	0,2 0,1 0,3	0,6 1,0 1,4	9,8 32,6 60,2	0,1 0,2 0,3	5,3 7,9 10,4	0,53 0,79 1,05	0,43 0,63 0,84	11, 7 17, 4 23, 2	0,1 0,1 0,1	33,1 54,7 78,4	3,3 5,5 7,9	3,3 5,3 7,9	4,3 7,3 10,5	73,5 121,4 174,1	0,4 0,5 0,6	3,3 6,3 9,6	
		1,2	до 2,78	14,8	1,49	1, 19	0,1	0,9	32,9	0,1	10,3	1,04	0,83	22,9	0,1	6,5	0,66	0,79	0,1	0,6	14,5	0,1	5,7	0,58	0,46	12,7	0,1	37,4	3,8	3,4	4,9	83,0	0,4	3,8	
		2×1,2 3×1,2	до 2,78 до 2,78	21,6 28,3	2,16 2,84	1,73 2,27	0,3	1, 4 1, 8	47,9 62,9	0,1	13,3 16,0	1,33 1,60	1,07 1,28	29,5 35,4	0,1	21,1 40,1	2,12 4,02	2,54 4,82	0,2	1,1 1,5	46,9 89,1	0,2	8, 7 11,4	0,88 1,14	0, 70 0, 91	19,3 25,2	0,1	64,7 95,8	6,5 9,6	6,5 9,5	8,5 12,7	143,6 212,7	0,5 0,8	7, 7 12, 3	
		1,5	до 3,45 3,55-5,0	15,9	1,59	1,3	0,1	1,0	35,3	0,1	11, 7	1, 17	0,9	25,9	0,1	11,5 17,7	1,15 1,77	1,38 2,13	0,1	0, 7 0, 7	25,5 39,3	0,1	6,2	0,63	0,5	13,9	0,1	45,3 51,5	4,5 5,2	4,4 5,1	5,8 6,6	100,6 114,3	0,4 0,4	4,9 6,0	
		2×1,5	до 3,45 3,55-5,0 до 3,45	23,6	2,36	1,9	0,1	1,5	52,3	0,1	14,3	1,43	1,2	31,7	0,1	33,0 49,7 58,4	3,30 4,97 5,85	3,96 5,97 7,02	0,1 0,1 0,3	1, 2 1, 2 1, 7	73, 2 110, 3 129, 7	0,3 0,4 0,5	8,9	0,89	0,7	19,7	0,1	79, 7 96, 4 118, 1	8,0 9,7 11,8	7,9 9,9 12,4	10,4 12,4 15,5	176,9 214,1 262,2	0, 6 0, 7 1, 0	10, 2 13, 2 16, 1	
		3×1,5	3,55-5,0 do 5,85	31, 2	3,12 1,99	2,5 1,6	0,3	2,0	69,3	0,2	16,9 12,8	1, 70 1, 28	1,4	37,6 28,4	0, 2	87,9 15,9	8,79 1,59	10,55 1,91	0,3	1, 7	195,1 35,2	0,7	11,5	1,16 0,66	0,9	25,6 14,6	0,1	147,6 55,1	14,8 5,5	15, 9 5, 4	19,1 6,9	327,6 122,2	1, 2 0, 4	21,4 6,4	
		2×1,8	5,95-7,73 do 5,85	29,8	2,98	2,4	0,2	1,6	66,1	0,1	15,7	1,57	1,3	34,7	0,1	22,1	2,21 4,42	2,65 5,31	0,2	0,8 1,3	49,0 98,1	0,2	9,4	0,95	0,8	20,9	0,1	61,2 99,1	6,1 9,9	6, 2 10, 1	7,6 12,7	136,0 219,9	0,5 0,6	7,5 13,3	
		3×1,8	5,95-7,73 do 5,85 5,95-7,73	39,8	3,98	3,2	0,2	2,2	88,3	0,2	18, 1	1,81	1,5	40,2	0,2	60, 7 82, 1 112, 6	6,07 8,22 11,26	7, 29 9,86 13,51	0,2 0,2 0,2	1,3 1,9 1,9	134,7 182,3 249,9	0,5 0,6 0,8	11,9	1,19	1,0	26,4	0,2	115,6 151,8 182,3	11,6 15,2 18,2	12,1 15,9 19,5	14,7 19,6 23,2	256,5 337,1 404,7	0,8 1,2 1,4	16,3 21,9 27,4	
		2,00	do 7,62 7,72-10,37	20,7	2,07	1, 7	0,2	1, 1	45,8	0,1	13,5	1 ,35	1, 1	29,9	0,1	19,1 26,0	1,91 2,60	2, 29 3, 12	0,2	0,8	42,3 57,7	0,1	6,7	0,68	0,5	14,9	0,1	59,9 66,8	6,0 6,7	6,0	7,5 8,3	132,9 148,3	0,4 0,5	7,1 8,4	
		2×2,0	7,72-10,37	31,3	3,14	2,5	0,3	1, 7	69,5	0,1	16,0	1,61	1,3	35,6	0,2	53,4 71,7	5,34 7,17	6,41 8,61	0,3	1, 4	118,5 159,2	0,4	8,9	0,90	0,7	19,8	0,1	109,6 127,9	11,0 12,8	11,5 13,7	14,0 16,2	243,3 284,0	0,8	15, 2 18, 5	
		3×2,0	до 7,62 7,72-10,37	42,0	4,20	3,4	0,1	2,3	93,2	0,2	17,9	1, 79	1, 4	39,6	0,2	102,1 136,1	10, 21 13,62	12, 25 16, 34	0,3 0,3	2,0 2,0	226,6 302,2	0, 7 0, 9	11, 1	1,12	0,9	24,6	0,2	173,0 207,1	17,3 20,7	18,3 22,4	22,3 26,3	384,1 459,7	1,3 1,5	25,9 32,1	
Согласовано 																																			
	л Взам. инв. N°																																		
	одл. Подп. и дат																			, Кол.уч работал дерил	Лист Михайл Шайдулл	ова	Подпись	Дата 09.16 09.16						.115c.16-	-61 Стадия Р	Лист	m	Листов	
	Инв. № по																		ГИП Н.Кс		Литвине Лескова	?нко	Jul-	09.16		Железоб Ведо	етонный мость об	тип укреі Бьемов рас	пления. бот.	ı	M	K∩I	ПРО	EKT	Ĺ

	-		Объемы работ на оголовок																														
													Οδι	ьемы раб	от на огол	овок																	
n								Входной	оголовок											Выходной	і оголовок	,					1			Всего			
Быпуск	Σ	,o,																-									-	(δε	з устройс	тва конца	и укреплени	<i>IЯ)</i>	
UPG	δbi,	250		_	,	Русло						Откосы						Русло		1				Откосы									
	е тру	одно ³/сек	HUR 2	m	Монолит	пный бетоп	н В20, м³		נת' אי	HUR 2	^	B20,		מת, אי	HUR 12	m	Монолип	пный бето	В20, м ³		מה, אי	HUA	~	B20,		נת' אי	HUR 2	~	Монол бетон			מת, אי	
	יכשת	3 на Д, М	enner a), m	40 A		упора	ов для	<u> </u>	THE	nne u), m	40 M	HOW	<u> </u>	THE	nne n', r	10 M		упор	в для	20	THE	anne 1, r	, A	нош	g.	יםאא	nnet u), m	Ω , χ			<u> </u>	JAH.	A M
	пвер	CXOC	укре	нол	KN	020/	ловка	дут.	ie n	укре	нон	1 5e	тури,	ie n,	укре	404 OBK	KN	020/	овка	атур І, кг	ie n	укре	HOAL	ű õe	дышт , кг	ie n,	укрепл одка),	HOH	овка и 2	овка и 2а	у кг	ie n	пянь
	00	Pa	щадь ланир	Цебе	ıле		-	4рма! А-1,	повь	de	ебе	THEI	4рмап А-1,	повь	ЭР	Щебе	пле		-	4pmc 4-1	1086	do HUP	еде:	THE I	4рмап А-1,	одр	ф	Щебен	700	20/05 1a u	4рмап А-1,	1086	Зем.
			נטיים	тод	кре	าบก	าบก บ 2a		JAPE	ота)	III DOU	סעתו		ושענ	ота	III Door	кре	าบก	nun u Za		JUPU	рто п	TO O	סשתו		JUPE	пощадь (планир	nod III	78 02 DUNA	ם אנ		ושענ	<i>d</i>
			12		-51	1	10		АСФ	12		Мон		АСФ	12		71		10		Асфі	1		MOH		Ατφ	111		10	d/ mu		4 <i>C</i> Φ	
	2 20	до 9,67	24.5	2.45	4.7	0.3	11	177	0.4	4/ 0	4.44	4.4	24.0	0.4	21,6	2,16	2,60	0,3	0,8	47,9	0,1		0.60	0.5	45.0	0.4	63,9	6,4	6,5	8,0	141,8	0,4	7,8
•	2, 20	9,77-13,53	21,5	2,15	1, 7	0,3	1, 1	47,7	0,1	14,0	1,41	1, 1	31, 2	0,1	29,7	2,97	3,57	0,3	0,8	65,9	0,1	6,7	0,68	0,5	15,0	0,1	72,0	7,2	7,5	8,9	159,8	0,4	9,2
2	×2.2	до 9,67	32,9	3,29	2,6	0,4	1,8	73,0	0.1	16,4	1,65	1.3	36,4	0.1	64,0	6,40	7,68	0,4	1,5	142,0	0,3	9,1	0,92	0.7	20,2	0.1	122,3	12,3	13,1	<i>15,7</i>	271,6	0,6	17,4
	.^2,2	9,77-13,53	32,7	3,27	2,0	0,4	1,0	75,0	0,1	10,4	1,05	1,5	30,4	0,1	76,8	7,68	9,22	0,4	1,5	170,5	0,4	2,1	0,72	0,7	20,2	0,1	135, 2	13,5	14,6	17,2	300,1	0,7	19, 7
3	3×2,2	до 9,67	44,2	4,43	3,5	0,7	2,4	98,2	0,2	18,3	1,83	1,5	40,6	0,2	114,4	11,44	13, 73	0, 7	2,1	254,0	0,5	11,0	1,10	0,9	24,4	0,1	187,9	18,8	21,1	24,2	417,1	1,0	28,6
	.1	9,77-13,53	1	1			-	150		1	1.5	- "		,	154,1	15,42	18,50	0,7	2,1	342,2	0,7	-		-			227,6	22,8	25,9	29,0	505,4	1,2	35,7
	2,50	до 13,31 13,41–18,0	22,8	2,28	1,8	0,3	1,2	50,5	0,1	14,8	1,48	1,2	32,8	0,1	31,8 46,4	3,18 4.64	3,82 5,57	0,3	0,9	70,5 103,0	0,1	6,6	0,67	0,5	14,8	0,1	75, 9 90, 5	7,6 9,1	8,0 9,8	9,5 11,2	168,6 201,0	0,4	9,8 12,4
		∂o 13,31	22.121			12112				100.00					82,5	8,25	9,90	0,5	1,6	183,2	0.3		2.20				141,6	14,2	15,6	18,2	314,2	0,6	21,2
2	2×2,5	13,41-18,0	35,2	3,52	2,8	0,5	1,9	78,1	0,1	16,0	1,60	1,3	35,5	0,1	116,9	11,69	14,03	0,5	1,6	259,4	0,4	7,9	0,79	0,6	17,5	0,1	175,9	17,6	19,7	22,3	390,5	0,7	27,4
7	8×2,5	до 13,31	47.6	4,76	3,8	0,9	2,6	105, 7	0,2	17,2	1,73	1,4	38,3	0,2	153,8	15,38	18,45	0,9	2,3	341,3	0,5	9,1	0,92	0,7	20,3	0,1	227,7	22,8	26,2	29,3	505,5	1,0	36,2
_	1,2,5	13,41-18,0	47,0	4,70	3,0	0,2	2,0	703,7	0,2	17,2	1,13	1,4	50,5	0,2	218,0	21,80	26,16	0,9	2,3	483,9	0,7	2,1	0,72	0,7	20,5	0,1	291,9	29,2	33,9	37,0	648,1	1,2	47,8
	2,80	<i>∂o 16,50</i>	27,4	2,75	2,2	0,4	1,3	60,9	0,1	1 5,3	1,53	1,2	33,9	0,1	36,2	3,63	4,35	0,4	1,0	80,4	0,1	6,4	0,64	0,5	14,1	0,1	85,3	8,6	9,1	10,5	189,4	0,4	11,5
		16,6-23,84 до 16,50													50,0 97,8	5,01 9,79	6,01 11,75	0,4	1,0	111,1 217,2	0,1						99,1 164,1	9,9 16,4	10, 7 18, 3	12,2 20,8	220,1 364,2	0,4	13, 9 25, 3
2	2×2,8	16.6-23.84	42,8	4,29	3,4	0,6	2,0	95,1	0,1	16,0	1,60	1,3	35,5	0,1	127,7	12,77	15.32	0,6	1, 7	283,4	0,3	7,4	0,74	0,6	16,4	0,1	193.9	19,4	21,8	24,4	430,4	0,7	30,7
_	3×2.8	до 16,50	50.2	F 03	1.7	4.1	2.0	120.7	0.2	46.7	1.00	4.7	27.4	0.2	178,6	17,86	21,43	1, 1	2,5	396,5	0,5	7.0	0.70	0.6	47.7	0.1	261,3	26,2	30,2	33,4	580,1	1,0	42,6
3	ixZ,8	16,6-23,84	58,2	5,83	4,7	1, 1	2,8	129,3	0,2	16,7	1,68	1,3	37,1	0,2	243,2	24,32	29,19	1, 1	2,5	539,9	0,7	7,8	0,78	0,6	17,3	0,1	325,9	32,6	38,0	41,1	723,5	1,2	54,3
	3.00	до 19,50	28.8	2.88	2,3	0,5	1,3	63,9	0,1	16,2	1,62	1,3	35,9	0,1	41,0	4,10	4,92	0,4	1,0	90,9	0,1	6,1	0,61	0.5	13,5	0.1	92,0	9,2	9,9	11,3	204,2	0,4	12,6
	,	19,60-28,32		1,000	"	,	-				100				57,5	5,76	6,91	0,4	1,0	127,7	0,1			-			108,6	10,9	11,9	13,3	241,0	0,4	15,5
2	×3,0	до 19,50 19,60-28,32	45,0	4,50	3,6	0, 7	2,1	99,9	0,1	16,2	1,63	1,3	36,1	0,1	112,3 145,3	11,23 14,54	13,48 17,44	0, 7	1,8 1,8	249,3 322,6	0,3	6,5	0,65	0,5	14,4	0,1	180,0 213,0	18,0 21,3	20,3 24,3	22,9 26,8	399,6 472,9	0,6	28,3 34,3
	. 5 10	19,60-28,32 до 19,50	727.00	27.04			8.8	100	E E	200	- 10 -			10.00	204,6	20,46	24,55	1,2	2,6	454,2	0,4					12	288,3	28,9	24,3 33,7	36,8	640,1	1,0	47,8
3	3×3,0	19,60-28,32	61,2	6,12	4,9	1,2	2,9	135,9	0,2	16,3	1,64	1,3	36,2	0,2	277,5	27,75	33,30	1,2	2,6	616,0	0,7	6,2	0,63	0,5	13,8	0,1	361,3	36,1	42,5	45,6	802,0	1,2	61,0
+					•	•		<u>'</u>					1	-		,						•	•	1		1			,				

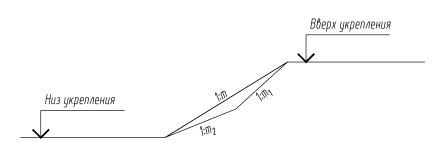
1. Объёмы работ определены при высоте укрепления откосов насыпи у входного
оголовка, равной h+0,5 м при крутизне откосов 1:1,5.

При высоте подпорного уровня высокой воды Н больше высоты h, площадь укрепления откосов насыпи у входного оголовка определяется по формуле:

При крутизне откосов насыпи положе 1:1,5 площадь укрепления определяется по формулам:

- на входе

$$F_{1m} = 0.56\sqrt{1 + m^2}F_1$$
 $F'_m = 0.56\sqrt{1 + m^2}F'$

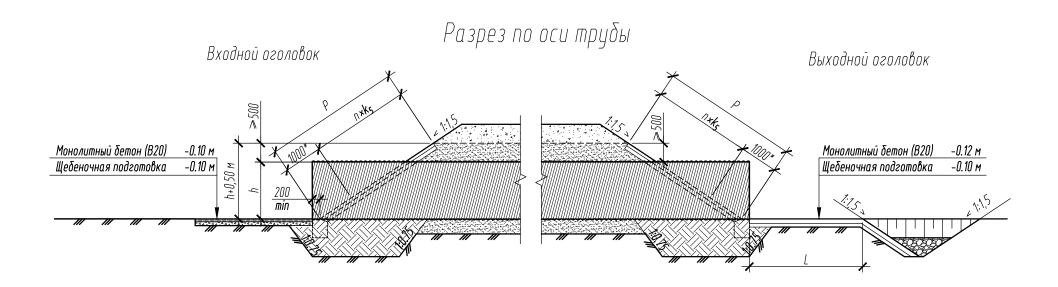

- на выходе

$$F_{2m} = 0.56 \sqrt{1 + m^2} F_2$$

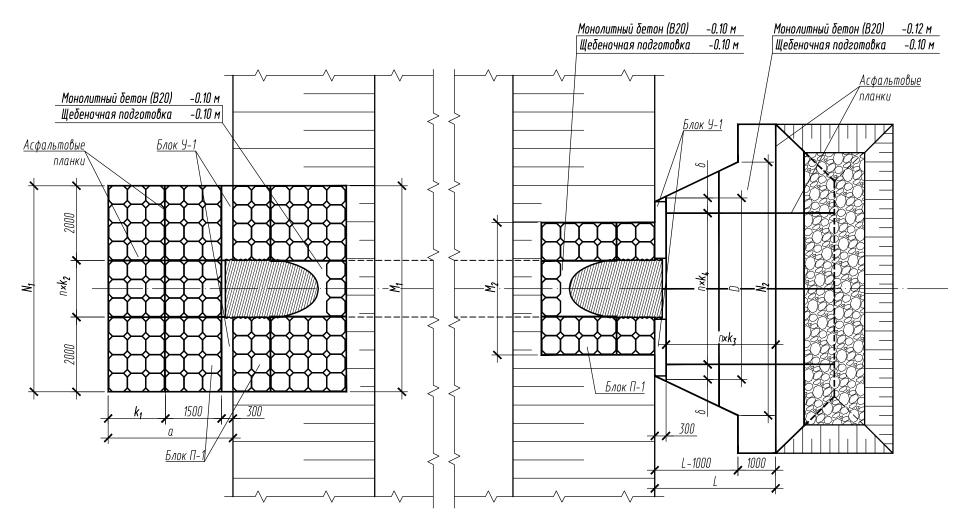
где F и F - площади укреплений откосов насыпи на входе и выходе, приведенные

F' – площадь укрепления откосов насыпи на входе при высоте укрепления больше чем h+0,5 m; ¯

т - фактическая крутизна откоса насыпи в пределах укрепления. В случае, когда в пределах укрепления откос насыпи имеет перелом, значение т принимается приближенно по спрямленному откосу.



- 2. Конструкция укрепления приведена на докум. 59 и 60. 3. Объемы работ по устройству конца укрепления приведены на
- докум. 68.
 4. Арматура по ГОСТ 5781-82 из стали класса А-I марки стали Ст3сп по ГОСТ 380-2005.


МГК ПРОЕКТ

Изм.	Кол.уч	Лист	№док	Подпись	Дата

3.503.3-115c.16-61

План

- 1. Материалы укрепления бетон класса B20, морозостойкость F200-F300 в зависимости от климатических условий района строительства, водопроницаемостью W6/ Арматура по ГОСТ 5781-82 из стали А-I (240) марки СтЗсп по ГОСТ 380-2005.
- 2. Высота укреплений откосов насыпи у входных оголовков принимается равной подпорному горизонту Н (для труб под железную дорогу при наибольшем расходе) плюс 0,5м, но не менее высоты, равной h+0,5 м. У выходного оголовка откосы насыпи укрепляются на высоту h+0,5.
- 3. Размеры определены при высоте укрепления откосов насыпи у входного и выходного оголовка, равной h+0,5 м. при крутизне откосов насыпи 1:1,5.Допускается увеличение высоты укреплений откосов насыпи за счет типового размера плиты П-1.
- 4. Применение типовых плит П-1 допускается при скорости течения воды до 3,0 м/сек.
- 5. Объемы основных работ приведены на докум. 64, конструкция конца укрепления на докум. 68.
- 6. Укрепление плитами П-1 выполнено с учетом материалов сборника «Укрепление русел, конусов и откосов насыпей у малых и средних мостов и водопропускных труб» шифр 2337 ОАО «Трансмост».

Изм.	Кол.цч	Лист	№док	Подпись	Дата	3.503.3-115c.16·	-62
Разрад		Михай		/ //	09.16		Cm
Провер		Шайду/		purog	09.16	, , , , , , , , , , , , , , , , , , ,	CIII
	10/1			Many		Комбинированный тип укрепления.	-
ГИП		Литвин	ненко	J. ~	09.16	Конструкция укреплений у труб	
				- 06		отв. 0,5-1,5 м	17
Н.Конт		Леско	ва		09.16		

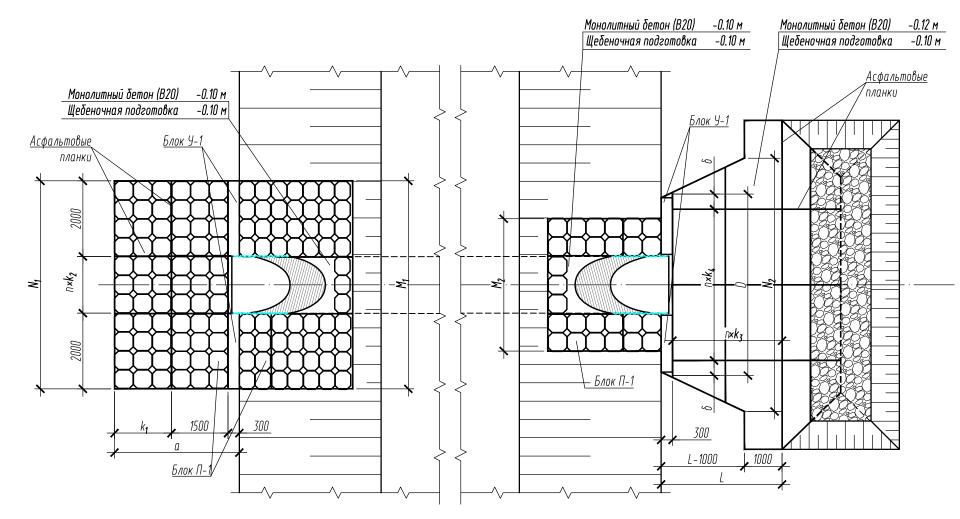
Стадия

/lucm

МГК∩ПРОЕКТ

Листов

Геометрические характеристики


Отверстие трубы, м	Расход на одно очко,		Вхо	дной оголо	вок				Выходн	ой оголо	вок			Р,	nyk	-	h+0,5 ,
	Q, м ³ /сек	а, м	k ₁ , шт×м	N ₁	пхk ₂ , шт×м	M_1 ,	<i>D,</i>	nxk ₄ , шт×м	δ, M	N ₂	L,	пхk ₃ , шт×м	M ₂ ,	M	пхк ₅ , шт×м	q , M	M M
				56.700							10.00		11496 49 1				
0,8	до 0,84	2,3	1,5	4,5	1×0,5	5,0	3,4	2×1,5	0,20	4,9	1,5	1×2,0	3,0	2,34	1 × 1,00	0,34	1,30
2×0,8	до 0,84	2,3	1,5	6,50	1×2,5	7,0	4,8	3×1,5	0,15	9,5	2,1	2×1,4	5,0	2,34	1 × 1,00	0,34	1,30
3×0,8	∂o 0,84	2,3	1,5	8,00	2×2,0	8,5	6,2	3×2,0	0,10	14,3	2,6	2×1, 7	6,5	2,34	1 × 1,00	0,34	1,30
1,0	∂o 1,75	3,3	1,5	5,00	1×1,0	5,0	3,4	2×1,5	0,20	5,4	2,0	1×2,0	3,0	2,70	1 × 1,50	0,20	1,50
2×1,0	∂o 1,75	3,3	1,5	7,00	2×1,5	7,0	6,2	3×2,0	0,10	10,1	2,8	2×1,4	5,0	2,70	1 × 1,50	0,20	1,50
3×1,0	∂o 1,75	3,3	1,5	9,00	2×2,5	9,0	7,6	4×1,8	0,20	15,0	3,4	2×1, 7	7,0	2,70	1 × 1,50	0,20	1,50
1,2	до 2,78	3,3	1,5	5,00	1×1,0	5,5	3,4	2×1,5	0,20	5,9	2,4	2×1,2	3,5	3,06	1 × 2,00	0,06	1, 70
2×1,2	до 2,78	3,3	1,5	7,00	2×1,5	7,5	6,2	3×2,0	0,10	11,4	3,4	2×1, 7	5,5	3,06	1 × 2,00	0,06	1, 70
3×1,2	до 2,78	3,3	1,5	9,50	2×2,0+ +1×1,5	10,0	9,0	4×2,0	0,50	16,9	4,1	2×2,05	8,0	3,06	1 × 2,00	0,06	1, 70
1.5	∂o 3,45	3,3	1,5	<i>E E</i> 0	1.15	5.5	/ 0	2 2 0	0.70	6,7	3,0	2×1,5	3,5	2.00	1 200	0.00	2.00
1,5	3,55-5,0	3,3	1,5	5,50	1×1,5	5,5	4,8	2×2,0	0,40	7,0	4,0	2×2,0	3,3	3,60	1 × 2,00	0,60	2,00
2.15	∂o 3,45	3,3	1,5	0.00	2 2 0	0.0	7.0	/ 10	0.20	13,0	4,2	2×2,1	<i>C</i> 0	2.00	1 200	0.00	2.00
2×1,5	3,55-5,0	3,3	1,5	8,00	2×2,0	8,0	7,6	4×1,8	0,20	14,0	5,6	3×1,87	6,0	3,60	1 × 2,00	0,60	2,00
2.15	đo 3,45	3,3	1,5	10.00	1.15	10 F	0.0	1-20	0.50	19,5	5,1	3×1,70	8,5	2.00	1 200	0.00	2.00
3×1,5	3,55-5,0	3,3	1,5	10,00	4×1,5	10,5	9,0	4×2,0	0,50	21,3	6,8	4×1, 70	0,5	3,60	1 × 2,00	0,60	2,00

МГК ПРОЕКТ

Изм.	Кол.цч	Лист	№док	Подпись	Дата

134

План

- 1. Материалы укрепления бетон класса B20, морозостойкость F200-F300 в зависимости от климатических условий района строительства, водопроницаемостью W6/ Арматура по ГОСТ 5781-82 из стали А-! (240) марки СтЗсп по ГОСТ 380-2005.
- 2. Высота укреплений откосов насыпи у входных оголовков принимается равной подпорному горизонту Н (для труб под железную дорогу при наибольшем расходе) плюс 0,5м, но не менее высоты, равной h+0,5 м. У выходного оголовка откосы насыпи укрепляются на высоту h+0,5.
- 3. Размеры определены при высоте укрепления откосов насыпи у входного и выходного оголовка, равной h+0,5 м. при крутизне откосов насыпи 1:1,5.Допускается увеличение высоты укреплений откосов насыпи за счет типового размера плиты П-1.
- 4. Применение типовых плит П-1 допускается при скорости течения воды до 3,0 м/сек.
- 5. Объемы основных работ приведены на докум. 64, конструкция конца укрепления на докум. -68.
- 6. Укрепление плитами П-1 выполнено с учетом материалов сборника «Укрепление русел, конусов и откосов насыпей у малых и средних мостов и водопропускных труб» шифр 2337 ОАО «Трансмост».

Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
Разрад	<i>Ботал</i>	Михай	ілова	Juis	09.16	
Провер	υЛ	Шайдул	1ЛИНА	Mais	09.16	
ГИП		Литвин	ненко	Jul-	09.16	
				0.6		
Н.Конт		Леско	ва		09.16	

3.503.3-115c.16-63

Комбинированный тип укрепления. Конструкция укреплений у труб отв. 1,5-3,0 м

Р	1	2
MTK		OEKT

Стадия Лист Листов

Геометрические характеристики

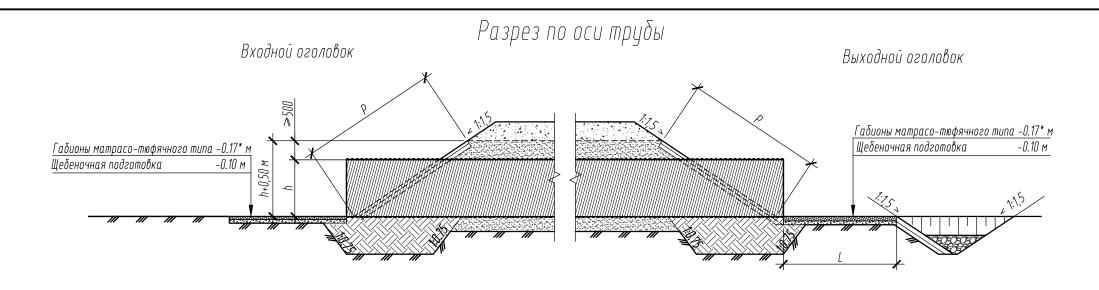
Отверстие трубы, м	Расход на одно очко,		Вході	ной оголо	вок				Вых	кодной огол	ловок						
	Q, м³/сек	а, м	k ₁ , шт×м	N ₁	пхk ₂ , шт×м	M_1 ,	D, M	пхk ₄ , шт×м	δ, м	N ₂	L,	пхk ₃ , шт×м	M ₂ ,	Р, м	пхк ₅ , шт×м	q , M	h+0,5 , M
1,50	∂o 3,71	3,30	1,50	5,50	1 × 1,50	5,50	4,80	2 × 2,05	0,35	6, 7	3,0	2 × 1,50	3,50	3,60	1 × 1,00	0,10	2,00
2×1,5	3,81-4,75 do 3,71	3,30	1,50	8,00	2 × 2,00	8,00	7,60	4 × 1,90	0,25	7,0	4,0	2 × 2,00 2 × 2,10	6,00	3,60	1 × 1,50 1 × 1,00	0,10	2,00
3×1,5	3,81-4,75 do 3,71	3,30	1,50	10,00	4 × 1,50	10,50	9,00	5 × 1,80	0,65	14,0 19,5	5,6 5,1	3 × 1,87 3 × 1,70	8,50	3,60	1 × 1,50 1 × 1,00	0,10	2,00
1,80	3,81-4,75 do 5,85	3,80	2,00	5,50	1 × 1,50	6,00	4,80	3 × 1,60	0,35	21,3 7,4	6,8 3,6	3 × 2,27 2 × 1,80	4,00	4, 14	1 × 1,50 2 × 1,50	0,14	2,30
2×1,8	5,95-7,73 do 5,85	3,80	2,00	8,50	3 × 1,50	9,00	7,60	4 × 1,90	0,75	7,8 14,5 15,3	4,5 5,0 6,3	3 × 1,50 3 × 1,67	7,00	4, 14	2 × 1,50	0,14	2,30
3×1,8	5,95-7,73 do 5,85 5,95-7,73	3,80	2,00	11,00	2 × 1,50 2 ×	11,50	10,40	5 × 2,08	0,15	21,8 23,2	6,3 6,1 7,7	4 × 1,58 4 × 1,53 4 × 1,93	9,50	4, 14	2 × 1,50	0,14	2,30
2,00	3,93-7,73 do 7,62 7,72-10,37	3,80	2,00	6,00	1 × 2,00	6,00	4,80	3 × 1,60	0,35	7, 9 8, 2	4,0 5,0	2 × 2,00 3 × 1,67	4,00	4,51	1 × 1,50 1 × 2,00	0,00	2,50
2×2,0	до 7,62 7,72-10,37	3,80	2,00	8,50	3 × 1,50	9,00	7,60	4 × 1,90	0,85	15,6 16,3	5,6 7,0	3 × 1,87 4 × 1,75	7,00	4,51	1 × 1,50 1 × 2,00	0,00	2,50
3×2,0	до 7,62 7,72-10,37	3,80	2,00	12,00	4 × 2,00	12,00	11,80	6 × 1,97	0,35	23,4 24,5	6,8 8,5	4 × 1,70 5 × 1,70	10,00	4,51	1 × 1,50 1 × 2,00	0,00	2,50
2,20	до 9,67 9,77-13,53	3,80	2,00	6,00	1 × 2,00	6,50	4,80	3 × 1,60	0,35	7, 9 8, 4	4,4 5,5	3 × 1,47 3 × 1,83	4,50	4,87	1 × 1,50 1 × 2,00	0,37	2,70
2×2,2	до 9,67 9,77–13,53	3,80	2,00	9,00	2 × 1,50 1 × 2,00	9,50	9,00	5 × 1,80	0,45	15,6 16,6	6,2 7,0	3 × 2,07 4 × 1,75	7,50	4,87	1 × 1,50 1 × 2,00	0,37	2,70
3×2,2	до 9,67 9,77–13,53	3,80	2,00	12,50	3 × 1,50 2 × 2,00	13,00	11,80	6 × 1,97	0,35	23,4 24,9	7,5 9,4	4 × 1,88 5 × 1,88	11,00	4,87	1 × 1,50 1 × 2,00	0,37	2,70
2,50	до 13,31 13,41–18,0	3,80	2,00	7,00	2 × 1,50	7,00	6,20	4 × 1,55	0,10	9,3 9,8	5,1 6,8	3 × 1,70 4 × 1,70	4,50	5,41	2 × 2,00	0,41	3,00
2×2,5	∂o 13,31 13,41–18,0	3,80	2,00	10,00	4 × 1,50	10,00	9,00	5 × 1,80	0,50	18,5 19,5	7,0 9,2	4 × 1,75 5 × 1,84	8,00	5,41	2 × 2,00	0,41	3,00
3×2,5	∂o 13,31 13,41–18,0	3,80	2,00	14,00	5 × 2,00	14,00	13,20	7 × 1,89	0,65	27,8 29,5	8,5 11,2	5 × 1,70 6 × 1,87	11,50	5,41	2 × 2,00	0,41	3,00
2,80	до 16,50 16,6-23,84	4,00	2,50	7,50	1 × 1,50 1 × 2,00	7,50	6,20	3 × 2,07	0,10	9,6 10,1	5,5 7,1	3 × 1,84 4 × 1,79	5,00	5, 95	3 × 1,50	0,45	3,30
2×2,8	∂o 16,50 16,6-23,84	4,00	2,50	11,50	5 × 1,50	11,50	10,40	6 × 1,73	0,20	19,1 20,0	7,6 9,4	5 × 1,53 5 × 1,88	8,70	5,95	3 × 1,50	0,45	3,30
3×2,8	до 16,50 16,6-23,84	4,00	2,50	15,50	1 × 1,50 5 × 2,00	15,50	14,60	8 × 1,83	0,30	28,6 30,1	9,3 11,9	5 × 1,85 6 × 1,98	12,50	5,95	3 × 1,50	0,45	3,30
3,00	<i>do</i> 19,50 19,60-28,32	4,00	2,50	8,00	2 × 2,00	8,00	6,20	3 × 2,07	0,10	10,1	6,0 7,8	4 × 1,51 4 × 1,95	5,50	6,31	2 × 1,50 1 × 2,00	0,31	3,50
2×3,0	<i>do</i> 19,50 19,60-28,32	4,00	2,50	12,00	4 × 2,00	12,00	10,40	6 × 1,73	0,20	20,3 21,3	8,3 10,2	5 × 1,66 5 × 2,04	9,50	6,31	2 × 1,50 1 × 2,00	0,31	3,50
3×3,0	до 19,50 19,60-28,32	4,00	2,50	16,50	3 × 1,50 4 × 2,00	16,50	14,60	8 × 1,83	0,30	30,5 31,9	10,1 12,9	5 × 2,02 7 × 1,85	13,50	6,31	2 × 1,50 1 × 2,00	0,31	3,50

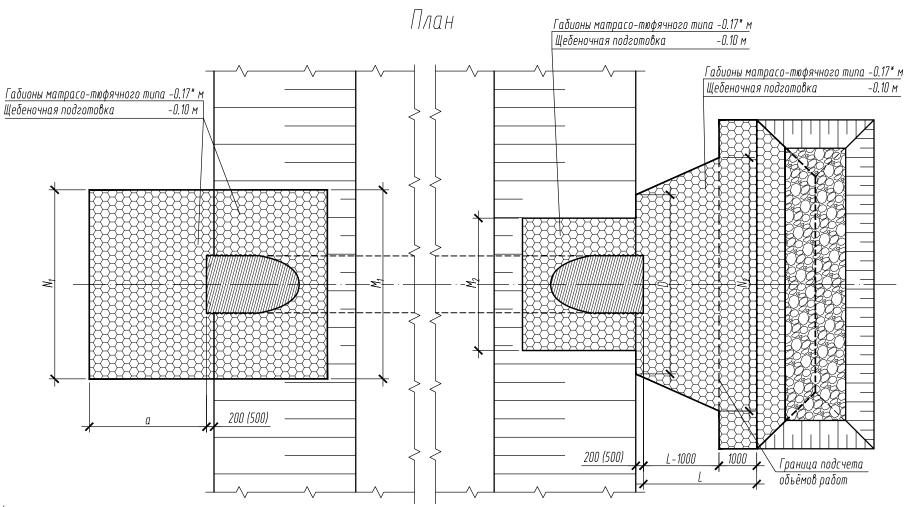
МГК ПРОЕКТ

Изм. Кол.уч Лист №док Подпись Дата

3.503.3-115c.16-63

																					Оδь	емы р	абот н	1 <u>020</u> /10	овок																			5			_	_
	0						0	2			Bx	одной	020/10	вок				0										D		Вых	кодной с	оголовог	(0						(δε	з устро	Всего йства конц		ления)		
	Выпуск грубы, м	OYKO,		r'				усло		1 4	m ×	7	,o	+		,	r	Отко		- T	Z.	90,		ri i	Мон	олитны	й бетон	Русло	Блоки	Y-1		<u></u>		, ,	F	Откос		w. x	,00		1,	Бето	н блоков	3	Моно	олитный	0,	-
	в трук	од на одно О, м³/сек	ления м²	уждоши	Ь	локи П-	-1	Ь	локи 5	1 -1	нки, м	B20,	P M26	впна	M ²	-	БЛО	оки П-	1.	нки, к	B 20,	7 M20	ления м ²	товк		B20,	м ³ 208 для		пруб тип	a 1a u2a	2)	нки, м	тения м²	умоди	ЬЛ	оки П-1	,	нки, м		ления м²	товк	BZ	20, m ³		δетон	н <i>В20,</i> м ³	1 M26	
	рстие	од на	крепл	nodeo	im.	ω _ω	D 0	Œ.	M.	0 2	ה חמו	ноша	оство	крепл	вка),	-	ım.	χ »	0 0	ם חחם	бетон	эство	крепл 8ка),	подго	BU		повка	, iii	Σ	9 5	тура	-l, KZ nnai	крепл вка),	nodzo	ım.	Σ m	D %	ноша	роство	укрепл одка),	подго			тура	3ка 2	Зка 2a	оство	
	Отве	Pacxe	адь у	ная	-80, u	н В20,	латур А-f, к	-80° u	н В20,	Арматур В 10 А-1	товы	HU C	чый р	адь у	анпро	Σ	-Bo, u	H B20,	латур А-1, к	товы	HUÜ Ö	ный р	адь у аниро	жань	наииа	,	200	-βο, u	ч 820,	чатур	4-1, Арма	же д товы	адь у аниро	чная	-во, и	ч В20,	матур А-1, к	товы	א אוני א	аде д	ж В В	Π–1	<u>y_1</u>	Армап А-1,	u 1 ar	ozonot 1a u	100	Σ
			топП	Щебено	Kon	Бето	Арматура Ø8 A-1, кг	Kon	Бето	A P 10	τφανε	нолип	На	Площ	(пл		Kon	Бето	A D	сфаль	нолип	женш	пощ ии	ьбено	yKp	in w	mun 10 2	Kon	Бето	Apm	200	εφανη	Площ Пл	ебено	Kon	Бетон	A PO	сфаль	менш	лом)	ебено				дия			
	0,8	до 0,8	10,4		36	0,8			0,6			0,02	2 0,2	5 10	1,6 1,	,06		<u>0,9</u>	34,2 37,8	0,1	0,17	0,24	2,1	0,21	0,25	5 0,1	0,0	2,0	0,6	2,2	4,0	6 0,0	5,9	0,59			<u>16, 2</u>	0,1 0,1	10 0,14	28, 90	2,90	<u>2,12</u> 2,30		<u>96, 7</u> 105, 0	0,4	0,3	0,6	_
	2×0,8	3 do 0,8	15,0	1,50	52	1, 2	53,8	2	<u>0,6</u>		0 1	0,02	2 0,3	6 15	i, 3 1,	,53	_	<u>1,0</u>	<u>37,8</u>	0,2	0,03	0,35	7,9	0, 79	0,95	5 0,1	0,1	3,0	0,9	3,3	17,	,5 0,1	10,6	1,06	_	0,9	19,8 34,2	0,1 0,0	0,24	48,66	4,88	<u>3,04</u>	<u>1,50</u>	148,8		0,2	0,	95
	3×0,8	3 до 0,8	18,4	1,84	64	1,5	66,2	2	0,6	5,5 2,2		0,03	3 0,4	4 18	2,8 1,	,88	45 45	<u>1,0</u>	41,4 40,5	0,2	0,04	0,43	16,4	1,64	1,97	0,1	0,1	4,0	1, 2	4,4	36,	,4 0,2	14,1	1,41		1,2	37,8 47,7	0,1 0,0	13 0,32	67,68	6, 77	3,22 3,73	<u>1,80</u>	197,4		0,2	1, 2	20
	1,0	∂o 1,7.	16,5	1,6	60	1,4	59,4	2	1,8 0,6	2,2	0,2	0,02	2 0,4	0 12	2, 1 1,	,22		1,1	44,1	0,1	0,17	0,28	4,4	0,44	0,53	3 0,1	0,0	2,0	0,6	2,2	9,	8 0,0	6, 7	0,67	22	0,5	51,3 19,8	0,1 0,1	10 0, 15	39,69	3,98	3,91 2,94	1, 20	134,8	0,4	0,3	0,8	83
	2×1,0	∂o 1,7.	23,1	2,3	1 84	1,9	83,2		0, 6	2,2	0.2				7,5 1,	,76	<u>45</u>	<u>1,0</u>	45,0 40,5	0,2	0,04	0,40	14,7	1,47	1, 77	0,1	0,1	3,0	0,9	3,3	32,	,6 0,1	12,1	1,22	46	1,1	23,4 41,4	0,1 0,0	0,28	67,38	6, 76	3,13 4,03	<u>1,50</u>	203,1	0,2	0,2	1,.	24
	3×1,0	∂o 1,7.				2,5			1,0	2,2	0.3		0,7			-		1,1	44,1		0,05			+		5 0,1			1, 2	4,4	60,	,2 0,3	17,5	1,76		1,6	45,0 63,0	0,2 0,0	4 0,40	97, 24	9, 75	4,21 <u>5,22</u>	<u>1,80</u>	280,8	0,3		-	
	1,2	∂o 2,7	16,5	1,6	60	1,4	59,4	U	0,6	2,2	0.2	1	2 0,4	+		,52		<u>1,1</u>	47,7 <u>42,3</u>	0,2	0,17	0,35	6,5	0,66	0,79	0,1	0,1	2,0	0,6	2,2	14,	,5 0,1	9,0	0,91	23 27	0,5	66,6 20,7	0,1 0,1	10 0, 21	47,19	4, 74	5,41 2,99	1, 20	141,3	0,4	0,4	0,9	<u> </u>
	2×1, 2	? до 2,7	23,1	2,3	1 84	1,9	83,2	2	0,6		0.2	0,03	3 0,5.	5 21	1,3 2	2,13	<u>51</u>	<u>1,2</u>	45,9 45,9 49,5	0,2	0,04	0,49	21,1	2,12	2,54	0,1	0, 2	3,0	0,9	3,3	46,	,9 0,2	15, 2	1,52		1,1	24,3 42,3	0,2 0,0	0,35	80,65	8,08	3,17 4,19	<u>1,50</u>	223,7		0,4	1,_	39
	3×1, 2	do 2,7	31,4	3,14	114	2,6	112,9	2 2	0,6 2,1	5,5 2,2	0.3	0,04	0, 7.	5 28	3,9 2	, 90	<u>56</u>	<u>1,3</u>	,	0,3	0,06	0,67	40,1	4,02	4,8	2 0,1	0,1	5,0	1,5	5,5	89,	0,1 0,4	22,8	2,29	<u>77</u>	1,8	45,9 69,3 72,9	0,2 0,0	0,52	123, 24	12,35	4,37 <u>5,68</u> 5,87	2,10	329,4	0.3	0,3	1,9	14
	1,5	∂o 3,4	18.2	1.8	66	1,5	65.3	2	2,1	','		-	2 0,4	_		.78	<u>55</u>	.,	495		0,17		11,5	1, 15	1, 38		0,1	2,0	0,6	2,2	25,		10.5	1,05		0,6	24,3	0.1 0.1	10 0,24	57,84	5,80	<u>3,40</u>	<u>1, 20</u>	169,1	10	1,8	1,0	_)8
		3,55-5, ∂o 3,4)					4	1,2 0,6	., .	_	.,,.			,,,		59 <u>90</u>	1,4 2,1	53,1				17,7 58,4	1,77 5.85		?		+	-/-	-/-	39, 129,			77.5		_	27,9 55.8					3,59 <u>5,70</u>	_	152,9		2,6 7,4	+	_
	2×1,5	3,55-5,	26,4	2,64	96	2,2	95,0		1,5		-0.3	0,03	0,6	3 26	, 7 2	,68	94	2,2	84,6		0,17		87,9	8, 79		- 0.1	0,0	4,0	1, 2	4,4	195		19,5	1,96		1,5		0,2 0,1	10 0,45	131,04	13,13	5,89		238, 4 248,9	11,0		1, 3	70
	3×1,5	до 3,4 3,55-5,	33,0	3,30	120	2,8	118,8	<u>2</u>	<u>0,6</u>	<u>2,2</u> 7,7	0,3	0,04	0,7	9 35	i, 7 3	,58		<u>2,9</u> 3,0	112,5 116,1	0,4	0,17	0,82	44,2 60,7		5,3°	0.1	0, 2	5,0	1,5	5,5	98, 134,		28,5	2,86	<u>97</u> 101	2,2 2,3	<u>87,3</u> 90.9	0,3 0,1	0,66	141,43	14,16	<u>7,87</u> 8,05		326,3	5,8 7,8	5,9 7,9		27
	1,80	до 5,8	20.9	2,0	77	1,8	75,2	<u>2</u>	0,6	2,2	0,2	0,02	2 0,5	0 22	2,3 2	, 24	64	<u>1,5</u>	<u>57,6</u>	0,2	0,17	0,51	19, 1	1,91	2,29	0 1	0, 2	2,0	0,6	2,2	42,	2,3 0,2		1,41	<u>32</u>	0,7	<u>28,8</u>	0,1 0,1	10 0,32	76, 30	7,65	<u>3,98</u>	<u>1, 20</u>	208,3 217.7	2,7	2,8	1.	34
	2.40	5,95−7, ∂o 5,8		3.0	3 440	2.7	446.3									10			61,2 100,8	0.3	0.47	0.00	26, 0 102, 1	2,60 10,21	3,12	5	0.0		4.2		57, 226					0,8 <u>1,8</u>		0.3 0.4	10 0.64	405.60	40.57	4,16 <u>7,15</u>		113.4	3,6	12,8		40
	2×1,8	5,95-7,	3	3,2.	119	2,7	116,3	6	1,8	6,6	0,3	0,04	£ 0, f	0 34	3,0	, 40	116	2,7	104,4	0,3	0,17	0,80	136,1	13,62	16,3	4 0,7	0,2	6,0	1,2	4,4	302	2,2 1,4	20,5	2,65	80 84 120 124	1,9	75,6	0,3 0,1	0,61	195,60	19,57	7,34	3,00	295,7 307,3 546.1	16,8	16,9	_	10
	3×1,8	до 5,8. 5,95-7,	4/0	4,18	154	3,5	150,5	<u>∠</u> 8	2,4	8,8	0,4	0,05	1,00	0 44	5,1 4	,52	156	3,5 3,6	140,4	0,5	0,17	1,04	76,8	7,68	9,22	0,1	0,1	6,0	1,8	6,6	14 2, 170,	0,5 0,8	36,8	3,69	124	2,0	111,6	0,4 0,1	0,85	18 7, 70	18, 79	<u>9,80</u> 9,98	2,40 4,20	307.3 546.1 559.9 404.1 417.9	8,1 9,7	8,1 9,7	2,	89
		J,3J-7,	<i>y</i>					O	2,4	0,0							130	3,0	140,4				70,0	7,00	7,22						170,	7,3 0,0			124	2,7	111,0			<u> </u>		3,30	4,20	417.9	3,7	2,1	•	
רטטמא																																																
1																																																
3. N°																																																
4. UH																																																
Взаг																																																
	\exists																																															
, дат																																																_
odn. u																															\perp				$ \blacksquare$						7		 11[_	 12				
17																													Из	M Ko	Л 114	Nucm	N₀y∪k	Подп	IICL	Пата	ł).	503.3-	-110L.	10-04				


Изм. Кол.уч Лист №док Подпись Дата Разработал Михайлова рисск по 16 . Проверил Шайдуллина 09.16 Комбинированный тип укрепления. Ведомость объемов работ. 09.16 Литвиненко 09.16 Н.Конт. Лескова


Стадия Р **МГК∩ПРОЕКТ**

Лист

Листов

																	Объемь	ραδοm	на огол	овок																		Всего				T
0 >	_					Pı	усло		Вх	ходной (оголовон	΄			Откосы							Pı	μενο		Выход	ной оголова	K			Откосы						(без	устройст		укреплен	ия)		
Выпуск	Отверстие трубы, м	Расход на одно очко О, м³/сек	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	Кол-во, шт. Бетон В20, м³	Π-1	-во, шт.	Бетон B20, м³ пя Арматура	А-І, кг товые планки,	лонолитный бетон B20, м ³	Цементный роствор M200, м³	Площадь укрепления (планировка), м²	Щеденочная подготовка, м³	<i>5100</i>	Бетон B20, м³ пу Арматура 1—1 Оля 4-1 кэ	Асфальтовые планки, м³	тонолитный бетон B20, м³ Цементный роствор M200,	Площадь укрепления	Плинировки, м Щеденочная подготовка,	Моно впивния	литный в 20, м³ упорого оголо	бетон в для овка	Б	локи У- уб типа 1970, м _э		Арматура 96 А-1, кг Астальтовые планки м³	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	Кол-во, шт.	Бетон В20, м³	рв А-1, кг Асфальтовые планки, м³	лонолитный δетон B20, м³	Цементный роствор M200, м³	Площадь укрепления (планировка), м²	Щебеночная подготовка, м³	Бетон (B20, П-1		Арматура А-І, кг	для оголовка монолит 1 и 2	0	т Асфальтовые планки, м ³ Земляные	т равоны, т
	2,00 2×2,0 3×2,0 2,20 2×2,2 3×2,2 2,50 2×2,5 3×2,5 2,80 2×2,8 3×2,8 3,00 2×3,0	do 7,62 7,72-10,37 do 7,62 7,72-10,37 do 7,62 7,72-10,37 do 7,62 7,72-10,37 do 9,67 9,77-13,53 do 9,67 9,77-13,53 do 13,31 13,41-18,0 do 13,31 13,41-18,0 do 16,50 16,6-23,84 do 16,50 16,6-23,84 do 19,50 19,60-28,32 do 19,50	- 32,3 - 45,6 - 22,8 - 34,2 - 47,5 - 26,6 - 38,0 - 53,2 - 30,0 - 46,0 - 62,0	3,23 4,56 2,28 3,42 4,75 2,66 3,80 5,32 3,00 4,60 6,20 3,20	84 1,9 119 2,7 168 3,9 84 1,9 126 2,9 175 4,0 98 2,3 140 3,2 196 4,5 111 2,6 170 3,9 229 5,3 118 2,7 178 4,1	116,3 = 164,2 = 82,1 = 123,1 = 171,0 = 95,8 = 136,8 = 191,5 = 108,0 = 165,6 = 223,2 = 115,2 = 115,2 = 165,6 = 115,2 = 115,2 = 165,6 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 = 115,2 = 115,2 = 165,6 = 165,6 = 115,2 =	4	0,6 2, 1,8 6, 0,6 2, 1,8 6, 0,6 2, 2,4 8, 0,6 2, 1,2 4, 0,6 2, 1,2 4, 0,6 2, 1,8 6, 0,6 2, 1,7 9, 0,6 2, 1,5 5, 0,6 6 2, 2,2 4 8, 0,6 6 2, 2,2 4 8, 1,5 6 8, 1,5 6 8, 1,5 6 8, 1,5 6 8, 1,5 7 8, 1,5 8 8, 1,	4 0,2 2 0,3 2 8 0,5 2 4 0,2 2 0,3 2 0,5 2 0,3 2 0,5 2 0,3 2 0,6 2 0,6 2 0,6 2 0,6 2 0,6 2 0,6 2 0,6 2 0,6 2 0,7 2 0,6 2 0,6	3 0,04 5 0,05 2 0,03 3 0,04 5 0,06 6 0,04 6 0,06 7 0,06 8 0,03 8 0,03 9 0,05 9 0,05	1,28 0,72 1,10 1,49 0,77	37,7 51,2 28,5 43,1 60,1 34,3 50,5 72,1 40,6 64,4 88,2 46,2	3,78 5,13 2,86 4,32 6,02 3,44 5,06 7,22 4,07 6,45 8,83 4,63	126 130 184 184 85 141 145 211 215 100 170 254 258 110 211 254 258 110 258 110 258 210 302 306 132 136	1,7 68,4 2,29 113,4 3,0 117,0 4,1 162,0 4,1 165,6 1,9 72,9 2,0 76,5 3,2 126,9 3,3 130,5 3,2 126,9 3,3 130,5 3,2 126,9 3,3 130,5 5,8 228,6 102,6	0,4 0,5 0,3 0,4 0,6 0,3 0,5 0,7 0,4 0,6 0,9 0,5	9. 17 0,5 0,17 0,8 0,17 0,6 0,17 0,6 0,17 0,7 0,17 0,7 0,17 1,1 0,17 1,6 0,17 0,9 0,17 1,4 0,17 2,0 0,17 1,0 0,17 1,0 0,17 1,0	7 218, 153, 218, 127, 41,0 57,5 6 218, 33,5,0 50,0 97,0 8 127, 178, 33 243, 41,0 6 57,5 6 57,5 6 57,5 6 57,5 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 57,5 6 6 6 57,5 6 6 6 57,5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 21,80 9,79 7 12,7. 0 4,10 5,76 6 20,44 5 27,7. 4 11,44 8 7,68 9 3,18 4 4,64	5,57 3 18,45 0 26,16 11,75 7 15,32 4,92 6,91 6 24,55 5 33,30 6 13,73 9,22 3,82 5,57 0 7,68 14,03 3 18,45 0 26,16 4,28 6,01 11,75 7 15,32 29,19 4,92 6,91	- 0,1 - 0,1	0,2 0,0 0,0 0,1 0,0 0,1 0,2 0,1	6,0 3,0 5,0 7,0 3,0 5,0 7,0 8,0	0,6 1,2 1,8 0,9 1,5 2,1 0,9 1,5 2,1 0,9 1,5 2,1 0,9	2,2 4,4 6,6 3,3 5,5 7,7 3,3 5,5 7,7 3,3 5,5 8,8 3,3 6,6	283, 4 1,3 90, 9 0,4 127, 7 0,6 454, 2 2,6 616, 0 2,6 170, 5 0,6 103, 0 0,2 142, 0 0,6 259, 4 1,2 341, 3 1,2 483, 9 2,4 79, 0 0,6 111, 1 0,2 217, 2 1,6 283, 4 1,3 396, 5 1,8	15,2 28,7 42,2 18,8	1,88 3,34 5,05 2,08 3,98 5,87 2,58 4,78 7,04 3,05	40 90 94 144 148 41 45 101 105 171 175 45 49 122 126 199 203 50 54 134 138 230 234 67 71	0,8 32,1 0,9 36, 2,1 81,1 2,2 84, 3,3 129, 3,4 133, 0,9 36, 1,0 40, 2,3 90, 2,4 94, 3,9 153, 4,0 157, 1,0 40, 1,1 44, 2,8 109, 2,9 113, 4,6 179, 4,7 182, 1,2 45, 1,2 48, 3,1 120, 3,2 124, 5,3 207, 5,4 210, 1,5 60, 1,6 63, 3,9 153,	0,2 1, 0,3 6,6 2, 0,4 2, 0,2 2, 0,3 2, 0,5 2, 0,2 2, 0,3 2, 0,5 2, 0,6 2, 0,7 3, 0,7 3, 0,3 6, 0,7 6, 0,7 6, 0,7	0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10	0,66 0,97 0,43 0,77 1,16 0,48 0,91 1,35 0,59 1,10 1,62 0,70	315, 26 272, 45 113, 47 192, 20 337, 73	23,71 11,12 31,54 27,26 11,36 19,24 33,79 13,21 25,62 39,93 14,98	4,42 4,60 7,71 7,89 11,32 11,50 4,74 4,92 8,46 8,65 12,81 13,00 5,59 5,77 9,84 10,03 14,93 15,11 6,23 6,42 11,73 11,92 17,51 17,70 7,30 7,48 13,45	1,20 1,80 1,80 3,00 2,40 4,20 1,50 2,10 3,30 2,70 4,80 1,50 2,40 2,10 3,60 2,70 4,80 1,50 2,40 2,10 3,90 3,90 3,00 5,40 1,50 2,40	254. 2 263.6 83.7 193.1 6670.2 317.3 328.9 6811.8 695.6 464.6 478.4 288.3 297.7 197.4 206.8 802.8 802.8 814.4 296.7 336.7 337.7 539.6 302.3 312.8 329.7 403.3 545.7 558.4 403.7 403.3 609.1 624.0 950.1 403.3 403.	6,0 18,9 26,6 12,2 15,8 5,4 7,4 25,0 33,8 14,2 9,7 4,3 6,0 8,1 14,5 18,9 26,6 4,7 6,5 12,2 15,8 21,9 29,7 5,4	4,4 6,1 19,0 26,7 12,3 15,9 5,3 1,6 7,3 24,9 33,7 14,2 9,7 4,2 5,9 8,1 14,5 19,0 26,7 4,7 6,5 12,4 16,0 21,9 29,7 5,5 7,5 14,0	1,10 21,8 2,50 50,5 3,20 63,4 2,40 47,4 2,70 53,4 1,10 22,3 3,00 63,3 3,80 77,3 2,70 54,5 2,40 47,4 1,10 22,3 1,30 25,6 1,90 38,5 2,50 49,0 3,30 67,6 1,40 26,5 1,50 29,3 2,60 51,3 2,90 57,2 4,00 79,3 4,60 92,6 1,70 33,3 2,90 57,2	3 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7
	3×3,0	19,60-28,32 do 19,50 19,60-28,32	66,0		244 5,6		2	2,4 8, 0,6 <u>2,</u> 3,3 12,	2 0.7	7 0,07			9,99	<u>353</u>	5,4 <u>212,4</u> 5,5 216,0 8,1 <u>317,7</u> 8,2 321,3	10	0,17 2,3	204,	3 14,54 6 20,44 5 27,75	24,55	0.1	0,0	9,0	2,7	9,9	322,6 1,5 454,2 2,0 616,0 2,0	80.9	8, 10		3,9 153, 4,0 157, 6,3 247, 6,4 251,		0, 10		451,29	45,15	13,45 13,63 20,06 20,24	2,40 4,20 3,30 6,00	54 7,9 561,7 1269,1 1286,2 814.9 832.0	25,0	17,9 4,0 24,9 33,7	4.50 90.3	3
в. N° подл. и дата Взам. инв. N°		1. Объёг оголови При в укреплы При к формул -	ка, равн ысоте г ения от рутизн	юй h+0, nodnopн косов н e omkoc de F _{tm} = ode	делены пр 5 м при н ого уров асыпи у F′ = ов насы :0,56√1+п	крутизн Эня высо Входног FF, +1,8 М Пи полож	е отко кой во го ого 1,(H+h) ке 1:1,5	осов 1:1, оды Н б повка с	,5. ольше определ адь укр	высот! гляется реплени	ы h, пло п по фор	эщадь эмуле:				βι δο	таблице; F' - г. льше чем т - ф	- площа площаді h+0,5 п вактиче когда птся пр	. укрепл 1; еская кр в преде	еплений пения ог оутизна лах укр	откосов пкосов г откосо	насыпи а насы я отко	и на вхо пи в пре пс насып	де при в гделах ц и имееп	ысоте у креплен перело	приведеннь укрепления ния. м, значени				2. Ко 3. Од докум.	нструкі ъемы ро - 68. матуро	αδοπ no 1 no ΓΟC	устроі Т 5781	йству ко 1-82 из сп	ена на до нца укре тали кла	пления г	приведе.	т. Ны на Пали		ΥПР	DEKT	
Инв.																								Изм.	Кол.у	јч Лист	№док	Под	ПИСЬ	Дата					3.503) - 115C.	. 10-64	<u>.</u>			2	

- 1. Материалы укрепления габионы|, матрасно-тюфячный материал высотой 17–30 см, наполнение камень фр. 110–125, морозостойкость МРЗ 50, прочность свыше 1700 кг/м³.
- 2. Высота матраса зависит от водопропускной способности трубы и ограничивается по скорости потока. Для матрасов высотой: 17-25 см. максимально допускаемая скорость 4,2 м/с при камне фр.110 мм; 30 см максимально допускаемая скорость 5,0 м/с при камне фр.120 мм.
- 3. Для устранения вымывания камня из габионов, в днище конструкции укладывается геотекстиль (нетканный плотностью 240 кг/м²).
- 4. Высота укреплений откосов насыпи у входных оголовков принимается равной подпорному горизонту Н (для труб под железную дорогу при наибольшем расходе) плюс 0,5м, но не менее высоты, равной h+0,5 м. У выходного оголовка откосы насыпи укрепляются на высоту h+0,5.
- 5. Размеры определены при высоте укрепления откосов насыпи у входного и выходного оголовка, равной h+0,5 м. при крутизне откосов насыпи 1:1,5.
- Объемы основных работ приведены на докум. 67, конструкция конца укрепления на докум. 68.
- 7. Размеры укрепления приняты с учетом материалов сборника «Укрепление русел, конусов и откосов насыпей у малых и средних мостов и водопропускных труб» шифр 2337 ОАО «Трансмост», основываясь на проделанных расчетах.
- 8. Применение укреплений габионного типа для труб больших отверстий с большой водопропускной способностью допускаемой скоростью свыше 5,0 м/с, нецелесообразно.

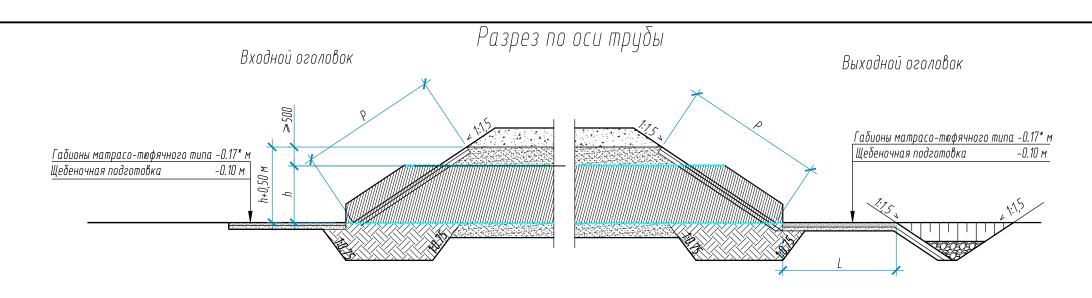
ı							
ı							
	Изм.	Кол.уч	Nucm	№док	Подпись	Дата	
	Разрад	ботал	Михай	ілова	Juis	09.16	
ı	Провер	IUΛ	Шайдул	1ЛИНА	Mais	09.16	
ı	ГИП		Литвин	ненко	Jul-	09.16	
ı					64		
	Н.Конт		Леско	ва		09.16	
	Н.Конт		Леско	ва		09.16	

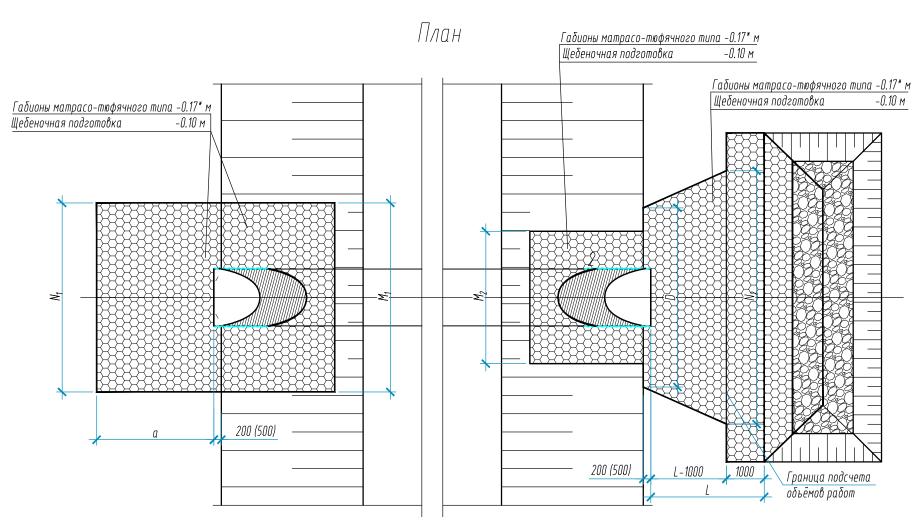
Габионный тип укрепления. Конструкция укреплений у труб

отв. 0,5-1,5 м

3.503.3-115c.16-65

Стадия Лист Листов
Р 1 2


МГК∩ПРОЕКТ


Геометрические характеристики

Отверстие	Расход на	Вхо	дной оголо	овок		Выходной	оголовок			
трубы, м	одно очко,		98172			are.		1110	Р,	h+0,5 ,
	Q, m³/cek	α,	N_1	M_1 ,	Д,	N ₂	L,	M_2 ,	M	М
		М	М	М	М	М	М	М		
0,5	до 0,26	1,5	4,00	4,0	4,00	4,5	1,5	2,5	1,80	1,00
2×0,5	до 0,26	1,5	5,55	5,6	5,55	9,2	2,1	4,1	1,80	1,00
3×0,5	до 0,26	1,5	7, 10	7,2	7,10	14,0	2,6	5,6	1,80	1,00
0,8	до 0,84	2,0	4,30	4,3	4,30	4,9	1,5	2,8	2,34	1,30
2×0,8	до 0,84	2,0	6, 15	6,1	6,15	9,5	2,1	4,6	2,34	1,30
3×0,8	до 0,84	2,0	8,00	7,9	8,00	14,3	2,6	6,4	2,34	1,30
1,0	∂o 1,75	3,0	4,50	4,5	4,50	5,4	2,0	3,0	2,70	1,50
2×1,0	до 1,75	3,0	6,55	6,5	6,55	10,1	2,8	5,0	2,70	1,50
3×1,0	до 1,75	3,0	8,60	8,5	8,60	15,0	3,4	7,0	2,70	1,50
1,2	до 2,78	3,0	4, 70	4,7	4,70	5,9	2,4	3,2	3,06	1, 70
2×1,2	до 2,78	3,0	6,95	7,0	6,95	11, 4	3,4	5,5	3,06	1, 70
3×1,2	до 2,78	3,0	9, 20	9,2	9,20	16,9	4,1	7, 7	3,06	1, 70
1,5	до 3,45	3,0	5,00	5,0	5,00	6, 7	3,0	3,5	3,60	2,00
1,5	3,55-5,0	3,0	3,00	5,0	3,00	7, 0	4,0	ر,ر	3,00	2,00
2×1,5	до 3,45	3,0	7,55	7,5	7.55	13,0	4,2	6,0	3,60	2,00
Z×1,5	3,55-5,0	3,0	7,55	7,5	7,55	14,0	5,6	0,0	5,00	2,00
3×1,5	до 3,45	3,0	10,10	10,0	10,10	19,5	5,1	8,5	3,60	2,00
ר,ו גר	3,55-5,0	3,0	10,10	10,0	10,10	21,3	6,8	د,ں	0,00	2,00

МГК ПРОЕКТ

I	Изм.	Кол.цч	Nucm	№док	Подпись	Дата	

- 1. Материалы укрепления габионы, матрасно-тюфячный материал высотой 17-30 см, наполнение камень фр. 110-125, морозостойкость МРЗ 50, прочность свыше 1700 кг/м³.
- 2. Высота матраса зависит от водопропускной способности трубы и ограничивается по скорости потока. Для матрасов высотой: 17-25 см. максимально допускаемая скорость 4,2 м/с при камне фр.120 мм.
- 3. Для устранения вымывания камня из габионов, в днище конструкции укладывается геотекстиль (нетканный плотностью 240 кг/м²).
- 4. Высота укреплений откосов насыпи у входных оголовков принимается равной подпорному горизонту Н (для труб под железную дорогу при наибольшем расходе) плюс 0,5м, но не менее высоты, равной h+0,5 м. У выходного оголовка откосы насыпи укрепляются на высоту h+0,5.
- 5. Размеры определены при высоте укрепления откосов насыпи у входного и выходного оголовка, равной h+0,5 м. при крутизне откосов насыпи 1:15.
- . Объемы основных работ приведены на докум. 67, конструкция конца укрепления на докум. 68.
- 7. Размеры укрепления приняты с учетом материалов сборника «Укрепление русел, конусов и откосов насыпей у малых и средних мостов и водопропускных труб» шифр 2337 ОАО «Трансмост», основываясь на проделанных расчетах.
- 8. Применение укреплений габионного типа для труб больших отверстий с большой водопропускной способностью допускаемой скоростью свыше 5,0 м/с, нецелесообразно.

Изм.	Кол.уч	Лист	№док	Подпись	Дата
Разра	δοπαл	Михай	ілова	June	09.16
Провеј	ОИЛ	Шайдул	1ЛИНО.	Mais	09.16
ГИП		Литвин	ненко	Jul-	09.16
				6.6	
Н.Конп	٦.	Леско	ва		09.16

Габионный тип укрепления. Конструкция укреплений у труб отв. 1,5-3,0 м P 1 2

MIKATIPOEKT

Геометрические характеристики

Отверст	Расход на	Вхо	дной оголо	οβοκ		Выходной	оголовок		_	
ue	одно очко,	а,	N_1	M_1 ,	D,	N ₂	L,	M_2 ,	Р,	h+0,5 ,
трубы, м	Q, m³/cek	М	м	М	М	м	М	М	М	М
1.50	до 3,71	2.00	F 00	<i></i>	/ 00	6,7	3,0	2.50	3.60	2.00
1,50	3,81-4,75	3,00	5,00	5,00	4,80	7,0	4,0	3,50	3,60	2,00
2×1,5	до 3,71	3,00	7,55	7,50	7,60	13,0	4,2	6,00	3,60	2,00
2 ~ 1, 5	<i>3,81</i> –4,75	3,00	,,55	7,50	7,00	14,0	5,6	0,00	3,00	2,00
3×1,5	до 3,71	3,00	10,10	10,00	9,00	19,5	5,1	8,50	3,60	2,00
	3,81-4,75		,	,	-,	21,3	6,8		-,	
1,80	до 5,85	3,50	5,30	5,30	4,80	7,4	3,6	3,80	4,14	2,30
	5,95-7,73					7,8	4,5			
2×1,8	до 5,85	3,50	8,15	8, 20	7,60	14,5	5,0	6, 70	4,14	2,30
	5,95-7,73					15,3	6,3			
3×1,8	∂o 5,85 5,95-7,73	3,50	11,00	11,00	10,40	21,8 23,2	6,1 7,7	9,50	4,14	2,30
	до 7,62					7,9	4,0			
2,00	7,72–10,37	3,50	5,50	5,50	4,80	8,2	5,0	4,00	4,51	2,50
	до 7,62					15,6	5,6			
2×2,0	7,72-10,37	3,50	8,55	8,58	7,60	16,3	7,0	7,00	4,51	2,50
	до 7,62					23,4	6,8			
3×2,0	7,72-10,37	3,50	11,60	11,50	11,80	24,5	8,5	10,00	4,51	2,50
0.00	до 9,67	3.50	F 70	F 70		7,9	4,4	/ 00	4.07	0.70
2,20	9,77-13,53	3,50	5,70	5, 70	4,80	8,4	5,5	4, 20	4,87	2,70
2×2,2	до 9,67	3,50	8,95	9,00	9,00	15,6	6,2	7,50	4,87	2,70
2^2,2	9,77-13,53	3,30	0,75	2,00	5,00	16,6	7,0	7,50	4,07	2,70
3×2,2	до 9,67	3,50	12,20	12,20	11,80	23,4	7,5	10, 70	4,87	2,70
	9,77-13,53		, , , , , ,			24,9	9,4	3000 g 100 cole		
2,50	∂o 13,31	3,50	6,00	6,00	6,20	9,3	5,1	4,50	5,41	3,00
	13,41–18,0 đo 13,31					9,8 18,5	6,8			
2×2,5	13,41–18,0	3,50	9,55	9,50	9,00	19,5	7,0 9,2	8,00	5,41	3,00
	∂o 13,31					27,8	8,5			
3×2,5	13, 41–18,0	3,50	13,10	13,00	13,20	29,5	11, 2	11,50	5,41	3,00
2.00	до 16,50	/ 00	6.20	6 20	6.20	9,6	5,6	/ 00	E 0E	2 20
2,80	16,6-23,84	4,00	6,30	6,30	6,20	10,1	7,1	4,80	5,95	3,30
2×2,8	до 16,50	4,00	10,15	10,15	10,40	19,1	7,6	8, 70	5,95	3,30
2112,0	16,6-23,84	1,00	,,,,,	,,,,,	10,10	20,0	9,4		3,73	3,30
3×2,8	до 16,50	4,00	14,00	14,00	14,60	28,6	9,3	12,50	5,95	3,30
	16,6-23,84					30,1	11,9			
3,00	do 19,50	4,00	6,60	6,60	6,20	10,1	6,0	5,00	6,31	3,50
	19,60-28,32 до 19,50					10,7 20,3	7,8 8,3			
2×3,0	19,60-28,32	4,00	10,65	10,65	10,40	21,3	10,2	9, 10	6,31	3,50
	<i>до 19,50</i>		==			30,5	10, 1			
3×3,0	19,60-28,32	4,00	14,70	14,70	14,60	31,9	12,9	13, 10	6,31	3,50
			I	1			7.			1

Изм.	Кол.уч	Лист	№док	Подпись	Дата

									Оδъ	емы работ	на оголо	вок										
Выпуск О						Входной о	головок							Выходно	й оголов	DΚ			/-		его	,
BE				Pi	усло			Оть	ОСЫ			Pu	C/10			Оп	КОСЫ		(без уст	роиства	конца укр	≥пления)
	χ.'	4K0,			_				Т				1								Γ- Σ	
	труды,	0 0 X		π _ω χ		матрасо-		\mathcal{A}_{ω}		матрасо- ого типа		ω _E Σ		матрасо ого типа	1	Z.		матрасо- ого типа		\mathcal{A}_{ω}		матрасо- ого типа
		одно	ления М ²	вка,		1000 1110110	ения м²	вка,			тения м²	вка,			7 67	вка,			ения м²	вка,		
	Отверстие	Расход на О, м	Площадь укрепле (планировка), м	Щебеночная подготовка,	Наполлнение габиона. м³	Нетканный геотекстиль (плотностью 240 кг/м²), м²	Площадь укрепле (планировка), м	Щебеночная подготовка,	Наполлнение габиона, м³	Нетканный геотекстиль (плотностью 240	Площадь укрепле (планировка), м	Щебеночная подготовка,	Наполлнение габиона, м³	Нетканный геотекстиль		Щебеночная подготовка,	Наполлнение габиона, м³	Нетканный геотекстиль (плотностью 240	Площадь укрепле (планировка), м	Щебеночная подготовка,	Наполлнение габиона. М³	Нетканный геотекстиль (плотностью 240
	0,5	до 0,26	6,2	0,62	1,05	6,77	6,5	0,66	0,53	7, 15	2,0	0,20	0,24	2,17	3,8	0,38	0,31	4, 18	18,4	1,9	2,1	20,3
	2×0,5	до 0,26	8,5	0,85	1,45	9,32	8, 7	0,87	0,70	9,54	7, 7	0,77	0,93	8,47	6,0	0,60	0,48	6,57	30,8	3,1	3,6	33,9
	3×0,5	до 0,26	10,8	1,08	1,84	11,88	10,9	1,09	0,87	11,94	16,2	1,62	1,94	17,78	8,0	0,80	0,64	8,77	45,8	4,6	5,3	50,4
	0,8	до 0,84	8,9	0,90	1,52	9,81	8,3	0,83	0,67	9,09	2,1	0,21	0,25	2,28	4, 7	0,48	0,38	5,22	24,0	2,4	2,8	26,4
	2×0,8	до 0,84	12,6	1,27	2, 15	13,88	10, 7	1,07	0,86	11, 74	7,9	0,79	0,95	8,65	7,2	0,72	0,58	7,87	38,3	3,9	4,5	42,1
	3×0,8	∂o 0,84	16,3	1,64	2,78	17, 95	13,1	1,31	1,05	14,38	16,4	1,64	1,97	18,04	9,6	0,96	0,77	10,52	55,4	5,6	6,6	60,9
	1,0 2×1,0	до 1,75 до 1,75	14,1 20,3	1,41 2,03	2,40 3,45	15,51 22,28	9, 3 11, 9	0, 94 1, 20	0,75 0,96	10, 27 13, 10	4,4 14,7	0,44 1,47	0,53 1,77	4,84 16,14	5, 3 7, 9	0,53 0,79	0,43	5,81 8,64	33,1 54,7	3,3 5,5	4,1 6,8	36,4 60,2
	3×1,0	∂o 1,75	26,4	2,64	4,49	29,04	14,5	1,45	1,16	15, 10	27,1	2,72	3,26	29,83	10,4	1,05	0,83	11,48	78,4	7,9	9,8	86,3
	1,2	до 2,78	14,8	1,49	2,52	16,30	10,3	1,04	0,83	11,36	6,5	0,66	0,79	7,16	5, 7	0,58	0,46	6,30	37,4	3,8	4,6	41,1
\Box	2×1,2	до 2,78	21,6	2,16	3,67	23, 73	13,3	1,33	1,07	14,63	21,1	2,12	2,54	23,23	8,7	0,88	0,70	9,57	64,7	6,5	8,0	71,2
	3×1,2	до 2,78	28,3	2,84	4,82	31,15	16,0	1,60	1,28	17,56	40,1	4,02	4,82	44,16	11, 4	1, 14	0,91	12,50	95,8	9,6	11,8	105,4
		∂o 3,45	120	**	100	-		- 1			11,5	1,15	1,38	12,65					45,3	4,5	5,5	49,8
	1,5	3,55-5,0	15, 9	1,59	2,7	17,5	11, 7	1, 17	0,9	12,8	17, 7	1, 77	2,13	19,47	6,2	0,63	0,5	6,9	51,5	5,2	6,3	56,7
Н	2×1,5	∂o 3,45	23,6	2,36	4,0	25,9	14,3	1,43	1,2	15, 7	33,0	3,30	3,96	36,26	8,9	0,89	0,7	9,8	79, 7	8,0	9,8	87,7
	2×1,3	3,55-5,0	23,0	2,50	4,0	23,9	14,5	1,45	1, 2	15,7	49,7	4,97	5,97	54,65	0,5	0,03	0,7	9,0	96,4	9, 7	11,9	106,1
	3×1,5	∂o 3,45	31,2	3,12	5,3	34,3	16,9	1, 70	1,4	18,6	58,4	5,85	7,02	64,27	11,5	1, 16	0,9	12,7	118, 1	11,8	14,6	129,9
	341,5	3,55-5,0	2,,2	2,12	2,2	2 .,2	,,,,	.,	,,.	70,0	87,9	8,79	10,55	96,66	.,,2	,,,,,		12,7	147,6	14,8	18,2	162,3
	1,80	∂o 5,85	19,8	1,99	3,4	21,8	12,8	1, 28	1,0	14,1	15,9	1,59	1,91	17,45	6,6	0,66	0,5	7,2	55,1	5,5	6,8	60,6
	-	5,95-7,73									22,1	2,21	2,65	24,26	-	-	-		61,2	6,1	7,6	67,4
	2×1,8	до 5,85 5,95-7,73	29,8	2,98	5,1	32,8	<i>15, 7</i>	1,57	1,3	17,2	44,2 60,7	4,42 6,07	5,31 7,29	48,62 66,75	9,4	0,95	0,8	10,4	99,1 115,6	9, 9 11, 6	12,4 14,4	109,0 127,1
		∂o 5,85	Tooline on				9				82,1	8,22	9,86	90,32					151,8	15, 2	19,0	167,0
	3×1,8	5,95-7,73	39,8	3,98	6,8	43,7	18,1	1,81	1,5	19,9	112,6	11,26	13,51	123,82	11,9	1, 19	1,0	13,1	182,3	18, 2	22,7	200,5
	2,00	до 7,62	20,7	2,07	3,5	22,7	13,5	1,35	1, 1	14,8	19,1	1,91	2,29	20,96	6,7	0,68	0,5	7,4	59,9	6,0	7,4	65,9
	2,00	7, 72–10, 37	20,7	2,07	ر,ر	22,7	د,دا	دد,۱	1, 1	14,0	26,0	2,60	3,12	28,60	0,7	0,00	0,5	7,4	66,8	6, 7	8,3	73,5
Н	2×2,0	до 7,62	31,3	3,14	5,3	34,5	16,0	1,61	1,3	17,6	53,4	5,34	6,41	58,70	8,9	0,90	0,7	9,8	109,6	11, 0	13,8	120,6
		7,72-10,37			,,						71, 7	7,17	8,61	78,87	1			,	127,9	12,8	16,0	140,7
	3×2,0	до 7,62 7,72-10,37	42,0	4,20	7,1	46,2	17,9	1, 79	1,4	19,6	102,1 136,1	10, 21 13,62	12, 25 16, 34	112,29 149,74	11, 1	1, 12	0,9	12,2	173,0 207,1	17,3 20,7	21, 7 25, 8	190,3 227,8
		7,72-10,37									1,00,1	13,02	10,34	143,74					207,1	20,7	25,0	227,0
																			7	- 1/ /7		
												Изм.	Кол.уч Ли	ст №док	Подпись	Дата		_	3.503.3-115	L.10-0/		
H														хайлова		09.16				Стад	дия Лист	Листов
												Прове		йдуллина	7	09.16	ΓαΣ	ный тип укрепле	ouua.	P	1	2
												ГИП	Ли	твиненко	Jul-	09.16		ныи тип укрепле сть объемов ра				
												11.12		0	Br	00.17		<i>i</i>		M		IPOEKT
$\Box \bot$												Н.Коні	n. /le	скова	Jer .	09.16						

,									Оδъ	емы работ	на оголо	вок										
9						Входной о	головок							Выходной	оголовок				לאפט ערת		его конца укр	nenneuual
	Σ	o'		P	усло			Отя	КОСЫ			Ру	Ι Γ ΛΟ			От	КОСЫ		locs gen	проистои	Konga gkp	CHINCHON
	трубы,	чо очко, ек		ω χ		и матрасо- ного типа		, A		матрасо- ого типа		ω _Σ		матрасо- ого типа		w.W.		матрасо- ого типа		ω _ω Σ.		матрасо- иого типа
	Отверстие т,	Расход на одно Q, м ³ /сек	Площадь укрепления (планировка), м²	Щебеночная подготовка,	Наполлнение габиона, м³	Нетканный геотекстиль (плотностью 240 кг/м²), М²	Площадь укрепления (планировка), м²	Щебеночная подготовка,	Наполлнение габиона, м ³	Нетканный геотекстиль (плотностью 240	Площадь укрепления (планировка), м²	Щебеночная подготовка,	Наполлнение габиона,	Нетканный геотекстиль (плотностью 240	Площадь укрепления (планировка), м²	Щебеночная подготовка,	Наполлнение габиона,	Нетканный геотекстиль (плотностью 240	Площадь укрепления (планировка), м²	Щебеночная подготовка,	Наполлнение габиона, м³	Нетканный геотекстиль (плотностью 240
	2,20	до 9,67	21,5	2,15	3,7	23,6	14,0	1,41	1, 1	15,4	21,6	2,16	2,60	23,75	6,7	0,68	0,5	7,4	63,9	6,4	7,9	70,2
		9,77-13,53		,							29,7	2,97	3,57	32,67	200	,		, and the second	72,0	7,2	8,9	79,2
	2×2,2	до 9,67 9,77-13,53	32,9	3,29	5,6	36,2	16,4	1,65	1,3	18,0	64,0 76,8	6,40 7,68	7,68 9,22	70,36 84,48	9,1	0,92	0,7	10,0	122,3 135,2	12,3 13,5	15,3 16,9	134,6 148,7
		до 9,67									114,4	11,44	13, 73	125,84					187,9	18,8	23,6	206,7
	3×2,2	9,77-13,53	44,2	4,43	7,5	48,7	18,3	1,83	1,5	20,1	154,1	15,42	18,50	169,55	11,0	1, 10	0,9	12,1	227,6	22,8	28,4	250,4
	50800000	∂o 13,31	1989.22	207 16-207							31,8	3,18	3,82	34,95	10 100	and there is			75,9	7,6	9,4	83,5
	2,50	13, 41–18, 0	22,8	2,28	3,9	25,0	14,8	1,48	1,2	16,2	46,4	4,64	5,57	51,04	6,6	0,67	0,5	7,3	90,5	9,1	11,2	99,6
	2 2 5	∂o 13,31	25.2	2.52	6.0	20.7	16.0	1.00	4.7	17.6	82,5	8,25	9,90	90,75	7.0	0.70	0.6	0.7	141,6	14,2	17,8	155,7
	2×2,5	13, 41–18, 0	35,2	3,52	6,0	38,7	16,0	1,60	1,3	17,6	116,9	11,69	14,03	128,54	7,9	0,79	0,6	8,7	175,9	17,6	21,9	193,5
11	3×2,5	∂o 13,31	47,6	4,76	8,1	52,4	17,2	1, 73	1,4	19,0	153,8	15,38	18,45	169,13	9,1	0,92	0,7	10,0	227,7	22,8	28,7	250,5
	۵,2	13, 41–18, 0	47,0	4,70	0,1	52,4	17,2	1,75	1,4	13,0	218,0	21,80	26,16	239,78	9,1	0,92	0,7	10,0	291,9	29,2	36,4	321,1
	2,80	∂о 16,50	27,4	2,75	4,7	30,2	15,3	1,53	1,2	16,8	36,2	3,63	4,35	39,85	6,4	0,64	0,5	7,0	85,3	8,6	10,8	93,8
	2,00	16,6-23,84	27,4	2,73	7, ,	30,2	,,,,	1,55	","	,0,0	50,0	5,01	6,01	55,05	0,4	0,04	0,5	7,0	99,1	9,9	12,4	109,0
- 1	2×2,8	∂o 16,50	42,8	4,29	7,3	47,1	16,0	1,60	1,3	17,6	97,8	9,79	11, 75	107,62	7,4	0,74	0,6	8,1	164,1	16,4	20,9	180,5
	,	16,6-23,84	,	,			,	1		,	127,7	12,77	15,32	140,42		,	,		193,9	19,4	24,5	213,3
	3×2,8	∂o 16,50	58,2	5,83	9,9	64,1	16, 7	1,68	1,3	18,4	178,6	17,86	21,43	196,44	7,8	0,78	0,6	8,6	261,3	26,2	33,3	287,5
		16,6-23,84									243,2	24,32	29,19	267,50					325,9	32,6	41,1	358,5
	3,00	∂o 19,50	28,8	2,88	4,9	31,7	16,2	1,62	1,3	17,8	41,0	4,10	4,92	45,06	6,1	0,61	0,5	6,7	92,0	9,2	11,6	101,2
		19,60-28,32 до 19,50									57,5 112.2	5, 76 11,23	6,91	63,28					108,6	10,9	13,6 23,0	119,4
	2×3,0	19,60-28,32	45,0	4,50	7, 7	49,5	16,2	1,63	1,3	17,9	112,3 145,3	14,54	13, 48 17, 44	123,52 159,85	6,5	0,65	0,5	7,1	180,0 213,0	18,0 21,3	26,9	198,0 234,3
41		79,60-26,32 до 19,50									204,6	20,46	24,55	225,03					288,3	28,9	36,8	317,2
	3×3,0	19,60-28,32	61,2	6,12	10,4	67,3	16,3	1,64	1,3	18,0	277,5	27,75	33,30	305,24	6,2	0,63	0,5	6,9	361,3	36,1	45,5	397,4
'			<u> </u>	<u>I</u>	ı		I	<u> </u>	<u> </u>		10 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	-,,-	- 1	,-,-		<u>I</u>	I			/-	/ =	

1. Объёмы работ определены при высоте укрепления откосов насыпи у входного оголовка, равной h+0,5 м при крутизне откосов 1:1,5.

При высоте подпорного уровня высокой воды Н больше высоты h, площадь укрепления откосов насыпи у входного оголовка определяется по формуле:

F' =F₁ +1,8 M₁(H+h)

При крутизне откосов насыпи положе 1:1,5 площадь укрепления определяется по формулам:

- на входе

 $F_{1m} = 0.56\sqrt{1+m^2} F_1$ $F'_m = 0.56\sqrt{1+m^2} F'$

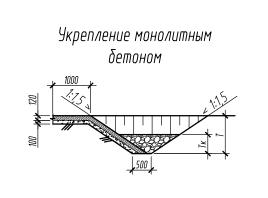
 $F_{2m} = 0.56 \sqrt{1 + m^2} F_2$

где F и F - площади укреплений откосов насыпи на входе и выходе, приведенные в таблице;

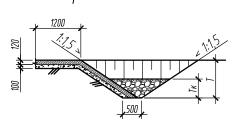
F' – площадь укрепления откосов насыпи на входе при высоте укрепления больше чем h+0,5 м;

т - фактическая крутизна откоса насыпи в пределах укрепления. В случае, когда в пределах укрепления откос насыпи имеет перелом, значение т принимается приближенно по спрямленному откосу.

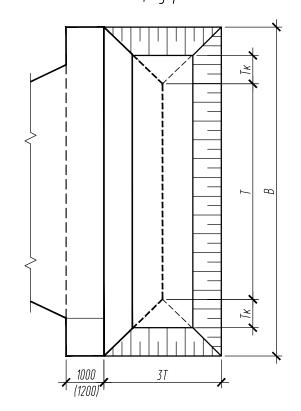
2. Конструкция укрепления приведена на докум. -65 и - 66. 3. Объемы работ по устройству конца укрепления приведены на


докум. -68.

4. Арматура по ГОСТ 5781-82 из стали класса А-I марки стали Ст3сп по ГОСТ 380-2005.

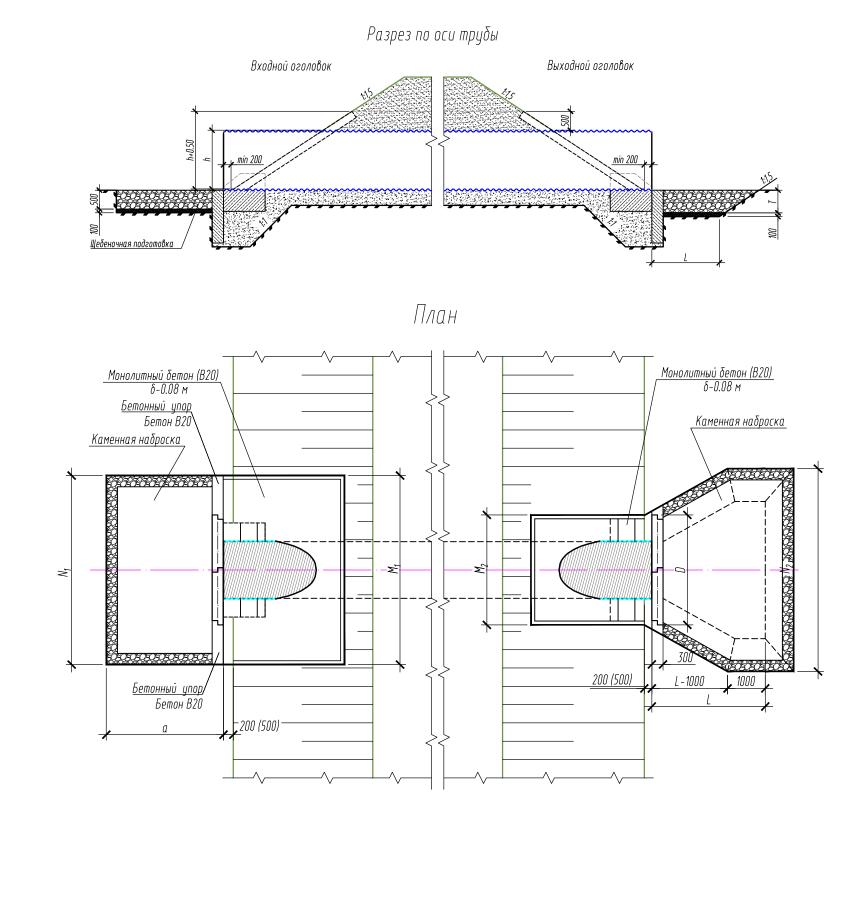


МГК ПРОЕКТ


3.503.3-115c.16-67

Укрепление блоками ГП

План конца укрепления



		Геометрические характеристики																	
Σ	0	Одн	00ЧК0	вые	Дву	хочко	вые	Тре	2хочко	вые	Одн	00ЧК0	вые	Дву	хочко	вые	Трехочковые		
	סאגס	Несвязные		ые гр	ie грунты d _{гр} =0,0003 м					Связные грунты с _р =0,005м				1					
Отверстие трубы,	Расход на одно о м³/сек	Т,	Тк, м	В, м	Т, м	Тк, м	В, м	Т, м	Тк, м	В, м	Т, м	Тк, м	В, м	Т, м	Тк, м	В, м	Т, м	Тк, м	В, м
0,5	0,2	1,0	0,50	4,7	1,0	0,50	10,0	1,0	0,50	15,4	1,0	0,50	4,3	1,0	0,50	10,0	1,0	0,50	15,4
0,5	0,3	1,0	0,50	4,5	1,0	0,50	9,2	1,0	0,50	14,0	1,0	0,50	4,2	1,0	0,50	9,2	1,0	0,50	15,4
0,8	0,5	1,0	0,50	5,4	1,0	0,50	11,1	1,0	0,50	16,8	1,0	0,50	5,1	1,0	0,50	11,1	1,0	0,50	16,8
-,-	0,8	1,0	0,50	5,2	1,0	0,50	10,2	1,0	0,50	15,4	1,0	0,50	4,9	1,0	0,50	10,2	1,0	0,50	15,4
	0,8	1,0	0,50	5,7	1,0	0,50	11,2	1,0	0,50	16,8	1,0	0,50	5,7	1,0	0,50	11,2	1,0	0,50	16,8
1,0	1,1	1,0	0,50	6,2	1,0	0,50	10,7	1,0	0,50	16,0	1,0	0,50	5,5	1,0	0,50	10,7	1,0	0,50	16,0
	1,8	1,0	0,50	6,1	1,0	0,50	10,4	1,0	0,50	15,5	1,0	0,50	5,4	1,0	0,50	10,4	1,0	0,50	15,5
	1,1	1,0	0,50	6,3	1,0	0,50	13,1	1,0	0,50	19,7	1,0	0,50	6,4	1,0	0,50	13,1	1,0	0,50	19,7
1,2	1,4	1,0	0,50	6,1	1,0	0,50	12,1	1,0	0,50	18,2	1,0 1,0	0,50	6,1	1,0	0,50	12,1	1,0	0,50	18,2
	2,0 2,8	1,0	<i>0,50 0,50</i>	6,8 7,6	1,0 1,0	<i>0,50</i>	11,6 11,4	1,0 1,0	0,50	17,3 16,9	1,0	0,50 0,50	6,0 6,1	1,0 1,0	0,50 0,50	11,6 11,4	1,0 1,0	0,50 0,50	17,3 16,9
	1,8	1,0	0,50	7,0	1,0	0,50	14,3	1,0	0,50	21,5	1,0	0,50	7,1	1,0	0,50	14,3	1,0	0,50	21,5
	2,5	1,0	0,50	7,5	1,0	0,50	13,6	1,0	0,50	20,5	1,0	0,50	6,9	1,0	0,50	13,6	1,0	0,50	20,5
1,5	3,5	1,0	0,50	8,8	1,0	0,50	13,0	1,0	0,50	19,5	1,0	0,50	7,7	1,0	0,55	13,0	1,1	0,55	19,5
,	4,0	1,0	0,55	9,2	1,0	0,55	14,6	1,0	0,55	22,1	1,0	0,55	7,8	1,0	0,55	14,6	1,0	0,60	22,1
	5,0	1,0	0,60	10,4	1,0	0,60	14,1	1,0	0,60	21,3	1,0	0,60	8,5	1,0	0,60	14,1	1,0	0,62	21,3
	2,0	1,0	0,50	8,3	1,0	0,50	16,7	1,0	0,50	25,3	1,0	0,50	8,3	1,0	0,50	16,7	1,0	0,50	25,3
	3,6	1,0	0,50	8,8	1,0	0,52	15,4	1,0	0,50	23,2	1,0	0,50	7,8	1,0	0,50	15,4	1,0	0,54	23,2
1,8	4,5	1,0	0,55	9,8	1,0	0,59	14,9	1,0	0,60	22,4	1,0	0,60	8,1	1,0	0,60	14,9	1,1	0,65	22,4
	5,5	1,0	0,60	10, 7	1,1	0,70	14,5	1,1	0,70	21,8	1,1	0,70	8,7	1,1	0,70	14,5	1,2	0,75	21,8
	7,4	1,1	0,70	-	1,1	0,70	15,3	1,2	0,80	23,2	1,2	0,80	10,4	1,3	0,90	15,3	1,4	1,00	23,2
	3,0	1,0	0,50		1,0	0,50	17,6	1,0	0,50	26,6	1,0	0,50	8,7	1,0	0,50	17,6	1,0	0,50	26,6
	5,0					0,55		1,0		24,6	1,0			1,0			1,1		24,6
2,0	7,1	1,1	0,70		1,1	0,70	15,6	1,1	0,70	23,4	1,2	0,80	9,8	1,2	0,85	15,6	1,3	0,90	23,4
	8,5	1,1	0,75		1,2	0,75		1,2	0,80	25,5	1,3	0,85		1,3	0,90	16,8	1,4	1,00	25,5
	9,5 10,4	1,2 1,3	0,00 0,85	_	1,2 1,3	0,80	16,5 16,3	1,2 1,3	0,85	25,0 24,6	1,4 1,4	0,95 1,00	11,4 11,9	1,4 1,5	1,00 1,10	16,5 16,3	1,5 1,6	1,05 1,15	25,0 24,6
	3,0	1,0	0,50		1,0	0,50	19,5	1,0	0,50	29,5	1,0	0,50	9,5	1,0	0,50	19,5	1,0	0,50	29,5
	5,0	1,0	0,55		1,0	0,59	18,1	1,0	0,50	27,3	1,0	0,60	9,0	1,0	0,60	18,1	1,1	0,56	27,3
2,2	7,0	1,1			1,1	0,70		1,1	0,70	25,9	1,2			1,2	0,80	17,2	1,3	0,85	25,9
	9,7	1,2			1,2	0,80		1,3	0,90	26,3	1,3			1,4	1,00	17,4	1,5	1,10	26,3
	13,5	1,4	_		1,4	1,00		1,4	1,00	24,9	1,6		13,4	1, 7	1,30	16,6	1,8	1,40	24,9
	3,5	1,0			1,0	0,50		1,0	0,50	33,0	1,0			1,0	0,50	21,7	1,0	0,50	33,0
	5,5	1,0	0,50	10,4	1,0	0,55	20,3	1,0	0,60	30,8	1,0	0,60	10,1	1,0	0,60	20,3	1,1	0,65	30,8
	8,5	1,1	0,70	12,9	1,1	0,75	19,1	1,2	0,75	28,8	1,2	0,80	10,6	1,3	0,90	19,1	1,4	0,95	28,8
2,5	10,8	1,2			1,3	0,85	18,5	1,3	0,90	27,8	1,4	1,00	12,0	1,5	1,05	18,5	1,5	1,15	27,8
	13,5	1,3			1,4	0,95	17,9	1,4	1,00	26,9	1,5	1,10	13,1	1,6	1,20	17,9	1,7	1,25	26,9
	15,5	1,4	1,00		1,4	1,00	_	1,5	1,10	30,3	1,6		13,9	1,7	1,30	17,5	1,8	1,40	30,3
	18,0	1,5	1,10	18, 7	1,5	1,10	19,6	1,6	1,20	29,5	1, 7	1,30	15,0	1,9	1,50	19,5	2,0	1,60	29,5

	ı	08	ъемы о		ых рас	бот на	! 1 п.м.	укре	пления			
	пления), м²	лты, м ³	готовка,	оска, м ³	MOI	креплен нолитн Бетоно	НЫМ	Укре	епление блоками ГП			
Т,м	укре ровка	ра боты,	ы под М ³	на броска,	Z,	A-I,	o8ыe ™³	M3	Арма	тура	класса	
	Площадь укрепления (планировка), м²	Земляные	Щебеночная подготовка, м³	Каменная	Бетон В20,	Арматура кг.	C	Бетон В20,	A-III, кг.	В, кг	Всего, кг	
1,0	2,8	2,2	0,28		0,34	6,20	0,02	0,49	3,77	3,20	6,97	
1,1	3,0	2,6	0,30		0,36	6,60	0,02	0,49	3,77	3,20	6,97	
1,2	3,2	3,0	0,32		0,38	7,10	0,02	0,49	3,77	3,20	6,97	
1,3	3,3	3,4	0,33	2	0,40	7,30	0,02	0,49	3,77	3,20	6,97	
1,4	3,5	3,8	0,35	TK2	0,42	7, 70	0,02	0,66	5,48	4,18	9,66	
1,5	3,7	4,3	0,37	1,5	0,44	8,20	0,02	0,66	5,48	4,18	9,66	
1,6	3,9	4,8	0,39	равняется	0,47	8,60	0,02	0,66	5,48	4,18	9,66	
1,7	4,1	5,4	0,41	няе	0,49	9,00	0,02	0,66	5,48	4,18	9,66	
1,8	4,2	6,0	0,42	α β	0,50	9,20	0,02	0,66	5,48	4,18	9,66	
1,9	4,4	6,6	0,44		0,53	9,70	0,02	0,66	5,48	4,18	9,66	
2,0	4,6	7,2	0,46	aM	0,55	10,10	0,02	0,66	5,48	4,18	9,66	
2,1	4,8	7,9	0,48	Объем камня	0,58	10,60	0,02	0,82	5,83	5,42	11,25	
2,2	5,0	8,6	0,50	бъе	0,60	11,00	0,02	0,82	5,83	5,42	11,25	
2,3	5,2	9,3	0,52	0	0,63	11,50	0,02	0,82	5,83	5,42	11,25	
2,4	5,4	10,0	0,54		0,65	12,00	0,02	0,82	5,83	5,42	11,25	
2,5	5,6	10,7	0,56		0,68	12,50	0,02	0,82	5,83	5,42	11,25	
2,6	5,8	11,4	0,58		0,70	13,00	0,02	0,82	<i>5,83</i>	5,42	11,25	

- 1. Объемы работ по устройству конца укрепления определяются путем умножения глубины размыва Т на ширину укрепления В.
 2. Конструкция укрепления и объем основных работ приведены на докум. 59-67.
 3. Материал укрепления бетон по ГОСТ 26633-91 класса В20, морозостойкостью F200-F300 в зависимости от климатических условий района строительства, водонепроницаемостью W6.
 4. Арматура по ГОСТ 5781-82 из стали класса А-I марки СтЗсп по ГОСТ 380-2005 и класса А-III марки 25Г2С. Арматура из стали класса В по ГОСТ 7348-81.

,	1,9 1,	,50 19,	5 2,0	1,60	29,5					
							3.503.3-115c.16-	-68		
	Изм.	Кол.уч	/lucm	№док	Подпись	Дата				
ſ	Разрад	<i>Ботал</i>	Михай	лова	hund	09.16		Стадия	Лист	Листов
	Провер	υЛ	Шайду/	1ЛИНА	Maif	09.16		Р		1
	ГИП		Литвин	ненко	J. m.	09.16	Конструкция конца укрепления			
					00 1			IMTK		POEKT
	Н.Конт		Леско	ва	De la	09.16				

Отверсти	Расход		Входной	оголовок		Выходной	оголовок	
е трубы,	на одно	h+0.50, M	α,	N ₁	D,	N ₂	L,	T
М	очко,		М	М	М	М	М	Т, м
0,5	∂o 0,02			4,0	3,4	3,6	1,2	1,0
2×0,5	до 0,02	1,0	1,8	5,6	4,8	7,4	1,2	1,0
3×0,5	∂o 0,02			7,2	6,2	11,0	1,3	1,0
0,8	<i>∂o 0,30</i>			4,3	3,4	4,5	1,9	1,0
2×0,8	∂o 0,30	1,3	2,3	6,1	4,8	9,2	2,0	1,0
3×0,8	∂o 0,30			7,9	7,6	13,5	2,2	1,0
1,0	∂o 1,00			4,5	3,4	4,9	2,5	1,0
2×1,0	∂o 1,00	1,5	3,3	6,5	6,2	9,7	2,7	1,0
3×1,0	∂o 1,00]		8,5	7,6	14,4	2,9	1,0
1,2	∂o 2,34			4,7	3,4	5,2	3,1	1,0
2×1,2	до 2,34	1, 7	3,3	7,0	6,2	10,2	3,4	1,0
3×1,2	до 2,34			9,2	9,0	15,0	3,7	1,0
1,5	до 3,80			5,0	4,8	6,1	3,8	1,0
2×1,5	до 3,80	2	3,3	7,5	7,6	12,1	4,3	1,1
3×1,5	до 3,80	1		10,0	9,0	17,8	4,7	1,2
1,8	∂o 3,90			5,3	4,8	7,3	4,4	1,0
2x1,8	∂o 3,90	2,3	3,8	8,2	7,6	14,4	5,1	1,3
3x1,8	∂o 3,90	1		11,0	10,4	21,2	5,8	1,4
2,0	∂o 4,00			5,5	4,8	8,1	4,9	1,3
2x2,0	∂o 4,00	2,5	3,8	8,5	7,6	16,1	5,7	1,4
3x2,0	∂o 4,00	1	70	11,5	11,8	23,2	6,1	1,5
2,2	∂o 4,00			5, 7	4,8	8,9	5,1	1,3
2x2,2	∂o 4,00	2,7	3,8	9,0	9,0	17,1	5,7	1,4
3x2,2	∂o 4,00			12,2	11,8	24,6	6,1	1,5
2,5	∂o 4,40			6,0	5,6	9,3	5,7	1,5
2x2,5	∂o 4,40	3,0	4,3	9,5	8,4	18,5	6,3	1,6
3x2,5	∂o 4,40	1		13,0	12,6	27,8	6,7	1, 7
2,8	∂o 4,60			6,3	5,6	9,6	5,7	1,5
2x2,8	∂o 4,60	3,3	4,3	10,1	9,8	19,1	6,3	1,6
3x2,8	∂o 4,60	1	-	13,9	14,0	28,6	6,7	1,8
3,0	∂o 5,0			6,3	5,6	10,1	5,7	1,5
2x3,0	∂o 5,0	3,5	4,8	10,3	9,8	20,3	6,3	1,6
3x3,0	∂o 5,0	1	==	14,3	14,0	30,5	6,7	1,8

						3.503.3-115c.16-69				
Изм.	Кол.уч	Лист	№док	Подпись	Дата	3.3 03.3	0,			
Разра	δοπαл	Михай	ілова	pucos	09.16		Стадия	Лист	Листов	
Прове	DU/I	Шайдул	1лина	Mais	09.16		Р	1	2	
ГИП	ГИП		ненко	Jul-	09.16	Укрепление каменной наброской				
							Mrk∩i		POFKT	
Н Конг	n	Леско	hп	Report 1	N9 16		""" "		OLI I	

						0	ъемы раб	от на укр	репление						
Σ		7		Входной	оголовок				оголовок				Всего		
	δy,	<i>IR</i> ,		Ру	СЛО						0.1		нс		
Отверстие трубы,	Расход на трубу, Q, м³/сек	Длина укрепления,	Площадь укрепления (планировка),	Щебеночная подготовка, м³	Монолитный бетон упоров В20,м³	Каменная на броска, м ³	Площадь укрепления (планировка),	Щебеночная подготовка, м ³	Монолитный бетон упоров В20,м³	Каменная на броска, м ³	Площадь укрепления (планировка), м²	Щебеночная подготовка,м ³	Монолитный бетон упоров B20,м³	Каменная наброска,м ³	Земляные ра <i>боты,</i> м ³
0,5	до 0,02	1,3	6,0	0,6	0,2	3,0	9,0	0,2	0,1	4,8	15,0	0,8	0,3	7,8	8,9
2×0,5	до 0,02	1,3	8,4	0,8	0,3	4,2	18,5	0,5	0,1	11,5	26,9	1,3	0,4	<i>15,</i> 7	17,4
3×0,5	до 0,02	1,3	10,8	1,1	0,3	5,4	27,5	0,9	0,1	17,8	38,3	2,0	0,4	23,2	25,5
0,8	∂o 0,30	1,9	8,6	0,9	0,3	4,3	13,6	0,3	0,1	7,9	22,2	1, 2	0,4	12,2	13, 7
2×0,8	∂о 0,30	2	12,2	1,2	0,3	6,1	27,9	0,6	0,1	16,6	40,1	1,8	0,4	22,7	25,0
3×0,8	до 0,30	2,2	15,8	1,6	0,2	7,9	43,3	1,3	0,1	27,8	59,1	2,9	0,3	35,7	38,8
1,0	∂o 1,00	2,5	13,5	1,4	0,3	6,8	17,2	0,5	0,1	10,6	30,7	1,9	0,4	17,4	19,6
2×1,0	∂o 1,00	2,7	19,5	2,0	0,2	9,8	33,8	1,3	0,1	22,9	53,3	3,3	0,3	32,7	36,1
3×1,0	∂o 1,00	2,9	25,5	2,6	0,3	12,8	53,6	2,2	0,1	37,3	79,1	4,8	0,4	50,1	55,1
1,2	до 2,34	3,1	14,1	1,4	0,3	7,1	20,7	0, 7	0,1	13,3	34,8	2,1	0,4	20,4	22,9
2×1,2	∂o 2,34	3,4	21,0	2,1	0,3	10,5	42,7	2,0	0,1	30,6	63,7	4,1	0,4	41,1	45,5
3×1,2	∂o 2,34	3,7	27,6	2,8	0,1	13,8	66,3	3,4	0,1	49,6	93,9	6,2	0,2	63,4	69,8
1,5	∂o 3,80	3,8	15,0	1,5	0,1	7,5	28,9	1,3	0,1	20,2	43,9	2,8	0,2	27,7	30,7
2×1,5	до 3,80	4,3	22,5	2,3	0,1	11,3	61,6	3,1	0,1	50,3	84,1	5,4	0,2	61,6	67,1
3×1,5	∂о 3,80	4,7	30,0	3,0	0,3	15,0	95,4	4,7	0,1	84,8	125,4	7, 7	0,4	99,8	107,9
1,8	до 3,90	4,4	18,6	1,9	0,2	9,3	37,0	1, 7	0,1	26,7	55,6	3,6	0,3	36,0	39,9
2x1,8	до 3,90	5, 1	28, 7	2,9	0,2	14,4	84,3	4,0	0,1	79,8	113,0	6,9	0,3	94,2	101,4
3x1,8	до 3,90	5,8	38,5	3,9	0,2	19,3	136,8	6,9	0,1	143,0	175,3	10,8	0,3	<i>162,3</i>	173,4
2,0	∂o 4,00	4,9	19,3	1,9	0,2	9,6	47,1	1,8	0,1	41,5	66,4	3, 7	0,3	51,1	55,2
2x2,0	∂o 4,00	5,7	29,8	3,0	0,3	14,9	102,1	4,8	0,1	103,7	131, 9	7,8	0,4	118,6	126,7
3x2,0	∂o 4,00	6,1	40,3	4,0	0,1	20,1	159,4	8,1	0,1	178,9	199,7	12,1	0,2	199,0	211,4
2,2	до 4,00	5,1	20,0	2,0	0,3	10,0	<i>52,3</i>	2,1	0,1	46,6	72,3	4,1	0,4	56,6	61,0
2x2,2	∂o 4,00	5,7	31,5	3,2	0,1	<i>15,8</i>	110,4	5,5	0,1	<i>114,3</i>	141,9	8, 7	0,2	130,1	138,8
3x2,2	∂o 4,00	6,1	42,7	4,3	0,2	21,4	167,3	8,4	0,1	187,1	210,0	12, 7	0,3	208,5	221,5
2,5	до 4,40	5,7	25,8	2,6	0,2	12,9	61,3	3,1	0,1	91,9	87,1	5,6	0,3	104,8	81,0
2x2,5	до 4,40	6,3	40,9	4,1	0,2	20,4	124, 7	6,2	0,1	199,6	165,6	10,3	0,3	220,0	154,0
3x2,5	∂o 4,40	6,7	55,9	5,6	0,2	28,0	201,5	10,1	0,1	<i>342,5</i>	257,4	15,7	0,3	370,5	239,4
2,8	до 4,60	5,7	27,1	2,7	0,2	<i>13,5</i>	62,5	3,1	0,1	93,8	89,6	5,8	0,3	107,3	83,3
2x2,8	до 4,60	6,3	43,4	4,3	0,2	21, 7	134, <i>0</i>	6, 7	0,1	214,4	177,5	11,0	0,3	236,2	165,0
3x2,8	∂o 4,60	6,7	59,8	6,0	0,2	29,9	212,5	10,6	0,1	<i>382,</i> 4	272,2	16,6	0,3	412,3	253,2
3,0	∂o 5,0	5,7	27,1	2,7	0,2	13,5	64,6	3,2	0,1	96,8	91,7	5,9	0,3	110,4	85,2
2x3,0	∂o 5,0	6,3	44,3	4,4	0,2	22,1	139,6	7,0	0,1	223,3	183,9	11,4	0,3	245,5	171,0
3x3,0	∂o 5,0	6,7	61,5	6,1	0,2	30,7	221,9	11, 1	0,1	399,5	283,4	17,2	0,3	430,2	263,6

Состав каменн	ой наброски
Крупность камня, см	% содержание камня
40	50%
5-20	30%
5	20%
средняя в	
наброске 19,2 см	

Состав каменной труб отв. 0,5; 2	
Крупность камня, см	% содержание камня
40	10%
5-20	70%
5	20%
средняя в	
наброске 19,2 см	

МГК ПРОЕКТ

Изм.	Кол.цч	Nucm	№док	Подпись	Дата

4

^{1.} Материал укрепления откосов насыпи принимается на основании технико-экономического сравнения вариантов укрепления.
2. Материал укрепления русла - каменная наброска из несортированного камня марки не ниже 200, морозостойкостью F200-F300 в зависимости от климатических условий района строительства.
3. Применение труб отв. 2,5;2x2,5; 3x2,5 м с укреплением каменной наброской нецелесообразно, так как водопропускная способность труб ограничена допускаемой скоростью потока по данному укреплению

^{*} Размеры и материал упоров назначаются в зависимости от принятого типа укрепления